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Abstract: The bifurcation and chaotic vibrations of the rotor system are simulated under the condition of the sealing 

forces excited by labyrinth seals. The rotor system, which is the important part of rotating machinery, will suffer serious 

self-excited (i.e. fluid induced) vibrations stemming from sealing structures. At first, the dynamic differential equations of 

the rotor system involving in sealing forces are established, in which the seal forces are determined based on the 

description of Muszynska (2005) known as a Muszynska sealing model. Then, numerical integration method is used to 

simulate the nonlinear vibrations of the rotor system under the given structure parameters and initial conditions. The 

obtained results of the rotor system include motion bifurcation patterns and different vibration behaviors. Based on them, 

the influences of the rotating speeds on the vibrations of the rotor system are compared to reveal the nonlinearity of the 

rotor system with sealing fluid forces. 
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1. Introduction 

Virtual prototype of machine in cyberspace is known as a 

highly developed and critical platform which is powerful to 

help machine designing, manufacturing and maintenance. In 

the process of establishing a virtual prototype of a machine, 

the modeling technologies of CAD/CAE/CAM are important. 

Among them, the technique of computer-aided-analysis is the 

most difficult and often limited to mechanic analyses. 

Recently, the concept of multi-physics simulation belonging 

to CAE is widely accepted and used steadily in machine 

designing of higher-tech equipments (Zhou et al., 2010), 

especially rotating machinery such as aero-engines in which 

aero-elastic and thermal and structure analyses are integrated.  

 

In practice, the rotor system of rotating machinery with 

sealing structures (i.e. rotor-sealing system) often suffers 

serious vibrations (forced and/or self-excited) stemming from 

the sealing structures. The changing flow and its pressure of 

the seal cavity easily produce external exciting forces during 

operating process of the machine, especially considering the 

sealing aero-elastic property. Different sealing structures may 

have different influence degree. The exciting effect of sealing 

structure on rotor vibration can be simplified and described as 

sealing fluid forces. Mostly, the sealing induced excitation 

forces are unavoidable and cause serious self-excited 

vibration of the rotor system.  

In order to investigate the vibrations of the rotor 

system caused by sealing fluid forces, many researches have Received: 11 February 2012, Accepted: 1 March 2012 
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been achieved for many years (Black et al., 1969, Childs et al., 

1978). Childs (1978) and Nelson (1988) studied the sealing 

fluid forces by both theoretical and experimental analyses. 

But, these studies are almost limited to the linear stability of 

the rotor-sealing system. The instability of the rotor system 

should be analyzed based on nonlinearity of the sealing fluid 

force. The Muszynska model, which can represent the 

possible nonlinear mechanism of the rotor-sealing system 

(Muszynska et al., 1990), is useful to analyze the system 

instability. The Muszynska model includes the effects of 

inertia, damping and stiffness of the sealing structure 

contributing to the rotor system, in which the ratio of average 

flow velocity is the key parameter to describe the sealing fluid 

force. 

In this paper, based on the Muszynska model of 

sealing fluid force, numerical simulations are used to inspect 

the rotor system vibrations caused by sealing fluid forces. At 

first, the dynamic equations of the rotor system involving 

Muszynska model are established. Then, numerical 

integrations are achieved for the transverse vibrations of the 

rotating shaft. The nonlinear behaviors of the rotor system are 

compared when with different rotating speeds. The bifurcation 

patterns, multi-periodic and chaotic vibrations of the rotor 

system are obtained. 

 

2. Modeling of the rotor system with sealing 

structure 

Shown in Fig. 1, a rotating disc drum with labyrinth 

sealing structure is mounted on the shaft. The rotor-sealing 

system is simplified to one which is consisted of a massless, 

soft-simply-supported shaft and a rigid disc. The disc is 

regarded as a lumped mass, which is unbalanced with a small 

eccentricity. The shaft is supported by the two same journal 

bearings. The two bearings are linearized ideally with stiffness 

and damping elements. 

Only transverse vibrations of the rotor system are 

considered. The governing equations of the rotor-sealing 

system are as follows, 
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Figure 1  Model of the rotor system 
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where,   is the rotating speed, Μ , J  are the mass and 

gyroscopic moment matrices, 
xC , yC  are the damping 

matrices in x- and y-directions, 
xK , yK  are the stiffness 

matrices, 
1u , 

2u , 
1u , 

2u , 
1u , 

2u  are the nodal 

displacement, velocity and acceleration vectors, respectively, 

e1M , 
e2M  are the unbalance forces. They are given as 

follows, 
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where, x , y are the displacements of the transverse vibrations 

at the disc center, m is the equivalent lumped mass of the disc, 

1

2
J mR２
ｐ＝ , 

1

2
J Jｄ ｐ＝ . The unbalance forces are 

2 cos( )ex eF m r t  , 
2 sin( )ey eF m r t  , in which 

em , r are unbalance mass and eccentricity of the disc. xF , 

yF  are components of the sealing force shown in next 

section. The stiffness matrices can be deduced by the 

corresponding flexibility matrices: 
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3. The Muszynska model of sealing fluid 

forces 

In Muszynska sealing model, the sealing fluid and its force 

vector are assumed to be rotating at  , where   is the 

average velocity ratio of the fluid in circumferential direction. 

The components of the sealing fluid force are as follows 

(Childs, 1978), 
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    (2) 

where, D is viscous damping coefficient, and K is radial 

stiffness of the fluid that flows through the sealing clearance, 

respectively; fm  is the effective mass of the sealing fluid. 

The coefficients K, D,   are the nonlinear functions of x, y 

as follows  
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where, e  is the relative eccentricity of rotors, 
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The parameters used here also include the sealing 

pressure drop P , inlet loss coefficient z, dynamic viscosity 

coefficient  , friction loss gradient coefficient  , 

Reynolds number 
vR  and 

aR  (in axial flow), axial 

velocity of fluid 
av , length and radius of the sealing l, R. 

Coefficients m0, n0 should be determined from experimental 

measurement. The empirical values of n, b, 
0  are 

determined by the sealing structure and experiments too, for 

example, 0.5 ~ 3,0 1n b   , 
0 0.5   (Zhang, 1990). 

 

4. Simulation examples 

In simulations, the structure parameters of the rotor-sealing 

system shown in Fig. 1 are: d=30mm, L=300mm, 

0d =240mm, b=25mm,  =
3 3

7.85 10 kg / m , em =95g, 

r=2mm, 53 10 N/mAx BxK K   , a=100mm, 

59 10 N/mAy ByK K   . 

The parameters of the sealing structure are: fm =20kg, 

c=1.5mm, K=7.57×105N/m, R=100mm, L=25mm, 

ΔP=0.75MPa, γ=1.3×10-3Pa.s, va=5 m/s. 

The other values of the used parameters in simulations 

include: m0= -0.25，n0=0.079，τ0=0.5，z=1.5，n=2，b=0.5. 

The bifurcation diagram of the transverse vibrations of 

the rotor-sealing system along the rotating speeds is shown in 

Fig. 2. It can be seen that, in the low rotating speed range of 

f<155Hz, the rotor system is in a stable single-periodic motion. 

Otherwise, if the rotating speed is up to 155Hz and more, the 

rotor system becomes unstable. 

The frequency spectra, Poincare mapping and axis center 

orbits under different rotating speeds are shown in Fig. 3, Fig. 

4, and Fig. 5. 
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Figure 2 Bifurcation diagram of the rotor-sealing system 

along the rotating speeds 

 

From Fig. 3 to Fig. 5, it can also be seen that, when the 

rotating speed is below 155Hz, the system is in a single steady 

state of motion. When the rotating speed is up to 155Hz or 

more, the Poincare mapping diagram becomes a closed curve, 

and it implies that there are multiple frequency components of 

the shaft vibrations. It is also demonstrated sin the obtained 

frequency spectra and axis center orbits. The simulation 

results show that there are so many complicated vibration 

patterns of the system suffering from quasi-periodic motions 

to chaotic motions when the rotating speeds increase. 

 

(a) Frequency spectrum 

 

(b) Poincare mapping 

 

(c) Axis center orbit 

Figure 3  Responses of the system at rotating speed f=50Hz 

 

 

 

 

(a) Frequency spectrum 

 

 

 

 

(b) Poincare mapping 

 

 

 

 

(c) Axis center orbit 

Figure 4 Responses of the system at rotating speed f=120Hz 
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(a) Frequency spectrum 

 

 

(b) Poincare mapping 

 

 

(c) Axis center orbit 

Figure 5  Response of the system at rotating speed f=300Hz 

 

5. Conclusions 

The vibrations of the rotor system with sealing fluid forces are 

simulated based on the numerical integration of the governing 

differential equations of the rotor-sealing system involving 

Muszynska sealing model. The obtained bifurcation and 

Poincare mapping diagrams show that the vibrations of the 

rotor-sealing system is nonlinear including periodic, 

quasi-periodic and even chaotic motions, when the rotating 

speeds change.  
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