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Abstract: This paper deals with the model identification problem of a piezo-ceramic actuator (PZT) based on a radial 

basis function (RBF) neural network. The phenomenon referred to as the rate-dependent hysteresis of a piezo-ceramic 

actuators can be a cause of considerable performance degradation in the applications. This paper proposes the RBF neural 

network as a model of hysteresis which characterizes the rate-dependent hysteresis of PZT. In order to increase precision 

of the adaptive RBF neural network modeling, the particle swarm optimization (PSO) algorithm is applied to optimize the 

parameters of the RBF neural network model. Several experiments have been additionally performed to demonstrate the 

precision and response of the proposed modeling for a wide variety of operating conditions. Analysis and comparison show 

that the proposed RBF neural network modeling for our PZT performed quite well. 
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1. Introduction 

Piezo-ceramic actuator is a kind of smart material which is 

widely used in many fields, such as ultra-precise machining, 

optical alignment and biotechnology. Although piezo-ceramic 

actuator has many advantages in applications, the property of 

rate-dependent hysteresis of the PZT might cause nonlinearity 

and instability of the system, which will lead to considerable 

deterioration of positioning accuracy without appropriate 

compensation [1-2]. 

Many researchers have researched the hysteresis modeling, 

such as well-known phenomenological mathematical model-

Preisach model [3]. In the previous research, Hata et.al., 

proposed a feed-forward positioning control system of PZT 

which suffers rate-dependent hysteresis. They used the inverse 

distribution function which is generated off-line by an 

interpolation of two inverse distribution functions identified at 

two different operating conditions corresponding to a certain 

driving frequency to cancel out the influence of hysteresis [4].  

However, the identification of distribution functions require 

plenty of computations. The method cannot achieve the on-line 

modeling and performance is not good enough as a numerical 

model of rate-dependent hysteresis. 

In the present research, in order to characterize the 

property of rate-dependent hysteresis of PZT, an RBF neural 

network (RBFNN) modeling is proposed for modeling of rate-

dependent hysteresis. Particle swarm optimization algorithm is 

utilized to optimize parameters of neural network, and 

adjusting of iterations is done to get more precise and better 

performance in our rate-dependent hysteresis modeling. 

 

2. RBFNN Modeling for hysteresis 

This section describes the details of rate–dependent hysteresis 

modeling of PZT using RBF neural network. 

2.1 Descriptions of RBFNN modeling 

Here we design a 3-7-1 layers RBF neural network for the 

modeling shown in Figure 1 which is given as follow: 
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Figure 1  Structure of neural network 

 

Input layer: the input nodes denoted by 𝑥1 , 𝑥2 ,  and 𝑥3 ,  

are given by 

              𝑥1 = 𝑟(𝑘)                                   (1) 

              𝑥2 = 𝑟(𝑘 − 1)                            (2) 

              x3 = y(k − 1)                            (3) 

respectively, where 𝑟(𝑘)  represents the current value of 

training input, 𝑟(𝑘 –  1)  is the value of training signal at 

previous time instant and 𝑦(𝑘 − 1)  amounts to the previous 

output displacement of the actuator. 

Hidden layer: nodes at hidden layer utilize the multiple 

radial basis function units necessary to capture the input-output 

dynamics of PZT. The output of hidden layer can be denoted by 

the following equations: 

              x = [𝑥1, 𝑥2, 𝑥3]                                           (4) 

ℎ𝑗 = exp (
−‖𝑥−𝑐𝑗‖

2

2𝑏𝑗
)         𝑗 = 1, ⋯ ,7 ,         (5) 

Where x is the input of hidden layer, ℎ is the output, and 𝑐, 𝑏 is 

the center and width of the Gaussian RBF. 

Output layer: output of the RBF neural network can be 

calculated by  

𝑦𝑚 = ∑ 𝑤𝑗 ∙ ℎ𝑗             𝑗 = 1, ⋯ ,77
𝑗=1         (6) 

Where the 𝑤 is the weight corresponding to ℎ. 

2.2 Training process of modeling 

The training of parameters in the RBF neural network is an 

important and difficult point for our design, so in order to get 

better performance for this neural network modeling, particle 

swarm optimization intelligent algorithm which is a global 

optimization proposed by Eberhart and Kennedy in 1995 is 

used for the parameters training of RBF neural network 

modeling [5]. 

The training process based on PSO begins with initializing 

a group of random particles corresponding to the variables to 

be sought, and then finds out the optimal solution through 

iteration. Particles track two extreme value to update their own 

in each iteration, one is the optimal solution called the 

individual extreme value p that particles themselves find, the 

other is the present global optimal solution called the global 

extreme values are found, the speed and the position of the 

particles will be updated by utilizing the equation 

 

    𝑣𝑛 = 𝑤 ∙ 𝑣𝑐 + 𝑐1 ∙ r ∙ (p − 𝑝𝑐) + 𝑐2 ∙ 𝑟 ∙ (𝑔 − 𝑝𝑐)   (7) 

 

for the speed and 

     𝑝𝑛 = 𝑝𝑐 + 𝑣𝑛                         (8) 

where 𝑣𝑛  represents the new speed of particles, 𝑣𝑐  is the 

current speed, 𝑝𝑛  is the new position of particles, 𝑝𝑐  is the 

current position, the coefficient 𝑟 ∈ (0, 1) is the random 

number generated for increasing the randomness of motion, 𝑐1 

and 𝑐2  are acceleration constants, and the w  is the inertia 

weight. 

In this training of RBFNN, the objective function is 

defined by  

 

𝑔(𝑘) =
1

2
𝑒(𝑘)2 =

1

2
(𝑦(𝑘) − 𝑦𝑚(𝑘))2        (9) 

 

Where y is the actuator output and y𝑚 is the model output. The 

training will be performed to make the value of 𝑔 as small as 

possible. In our pervious experimental design of RBFNN 

modeling for PZT, though the number of initial population is 

selected to be 100, individuals’ length to be 35 and the 

maximum number of iterations to be 100, each of which is 

determined by experience, we did not pay enough attention to 

the setting of iterations, then we increase the maximum number 

of iterations to be 200 and increase the setting of initial 
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population to 150. 

When model output 𝑦𝑚  approaches to the real actuator 

response y, g must decrease gradually. In order to visualize the 

progress of PSO training of RBF-NN for capturing PZT 

dynamics, the accumulated criterion as defined by 

𝐽 = ∑ 𝑔(𝑘)𝑁
𝑘=1                          (10) 

is calculated over one specific iteration, where N represent the 

number of signal samples contained in a single iteration. 

The 3-7-1 RBF-NN contains the parameters of center 𝑐, 

widths of function 𝑏 at hidden layer and the weights 𝑤 for the 

output layer in equation (6) are trained based on the PSO. 

  

3. Result 

The PZT used for our experiment is PZBA-00030 by FDK 

Corporation which has the dynamic range of ±1000μm and 

positioning resolution of 20nm. 

 

 

Figure 2  Input signal 

 

Figure 3  Training for RBF neural network 

 

The input shown in Figure 2 for our modeling of piezo-

ceramic actuator is a sinusoidal voltage signal with frequency 

from 10 to 1Hz. The frequency of the voltage signal varies to 

capture the property of rate-dependent hysteresis. 

Figure 3 shows training proceeds 𝐽, we can see that the 

training results are good and the proposed neural network 

acquire the dynamic relation of our PZT in the end of process. 

And with the help of comparison in Table 1, after tuning the 

number of iteration, the results become better in the proposed 

modeling. 

In order to see the performance of rate-dependent 

hysteresis modeling based on the proposed RBFNN, Figure 4-

6 shows the results of the proposed rate-dependent RBFNN 

modeling. 

 

Table 1  How number of iteration affect the modeling accuracy 

Times 50 200 

Minimum of J 0.00057 0.00045 

 

 

(1) Experimental data 

 

(2) NN model data 

Figure 5  Result of rate-dependent hysteresis  
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Figure 6  Output of modeling 

 

Figure 7  Modeling  error 

 

As shown in Figure 7, the root mean square of error 𝑒 

defined by  

  𝑒 = √(∑ (𝑦(𝑘) − 𝑦𝑚(𝑘)2)𝑛
𝑘=1 ) 𝑛⁄             (11) 

is 0.006mm which is smaller than 1-2% of the amplitude of 

motion, results validate that the proposed RBFNN modeling is 

very efficient for catching the behavior of rate-dependent 

hysteresis in the piezo-ceramic actuator. 

 

4. Conclusion 

In this paper, an RBF neural network model based on PSO 

algorithm is proposed for characterizing rate-dependent 

hysteresis for the piezo-ceramic actuator. With the help of 

proposed neural network based on the improved initial setting 

and experiment data, the results illustrate that this proposed 

RBF neural network model performance very well for the 

modeling of rate-dependent hysteresis in our PZT. The 

additional compensation design of our PZT will continue be 

performed based on this work in the future. 
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