
International Journal of Engineering Innovation and Management                    Vol.6, No.2, 2016 

13 

A Structural Optimization Method of Genetic Network Programming 

for Enhancing Generalization Ability 

 

Shingo Mabu, Yamaguchi University, Japan, mabu@yamaguchi-u.ac.jp 

Shun Gotoh, Yamaguchi University, Japan 

Masanao Obayashi, Yamaguchi University, Japan, m.obayas@yamaguchi-u.ac.jp 

Takashi Kuremoto, Yamaguchi University, Japan, wu@yamaguchi-u.ac.jp 

 

Abstract: Genetic Network Programming (GNP), one of the evolutionary algorithms, has been proposed as an 

extension of Genetic Algorithm (GA) and Genetic Programming (GP), and the distinguished evolutional abilities have 

been verified. The program of GNP is represented by a directed graph structure and the node transition of the graph 

structure represents action rules. In practical applications, the robustness and generalization ability are very important, 

thus, we propose a method of structural optimization for enhancing the generalization ability of GNP in this paper, where 

the connections of initial nodes of graph structures are changed by mutation more frequently than the conventional 

method in order to use/evaluate variety of node combinations to create effective action rules. The generalization ability is 

evaluated by the Tile-World problem that is one of the benchmark problems of multi-agent systems, where the fitness 

obtained in the testing (unknown) environments is measured and the generalization ability of the proposed method is 

clarified. 
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1. Introduction 

Recently, soft computing techniques such as Neural Networks, 

Fuzzy reasoning, and reinforcement learning are applied to 

various fields, and their usefulness has been shown. The 

advantage of the soft computing is that humans do not need to 

prepare complete control rules, but computers can obtain the 

flexible solutions. 

Each of these approaches may require robustness and 

generalization ability, that is, the ability to output the 

appropriate solutions not only in the training environments, 

but even in unknown environments. The robustness and 

generalization ability are required for any approaches when 

we consider the practical applications. 

On the other hand, Genetic Network Programming 

(GNP), one of the evolutionary algorithms, has been proposed 

as an extension of Genetic Algorithm (GA) [1] and Genetic 

Programming (GP) [2], and the distinguished evolutional 

abilities have been verified [3] comparing to GP, GP with 

automatic defined functions, and evolutionary programming 

(EP) [4]. Originally, GNP was proposed because graph 

structures basically have better representation abilities to 

make programs than string and tree structures. For example, 

node transitions in graph structures can make some repetitive 

processes like subroutines because some nodes can be 

repeatedly used by the node transition. In addition, after 

starting the node transition in a graph structure, GNP executes 

judgment nodes (if-then functions) and processing nodes 

(action functions) according to the connections between nodes 

without any terminal nodes. Thus, the node transition 

implicitly memorizes the history of judgments and processing, 

which contributes to the decision making in dynamic 

environments because GNP can make decisions based not 
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only on the current, but also the past information [3]. GNP has 

been applied to decision making systems such as stock trading 

systems [5], elevator group supervisory control systems [6], 

robot navigation systems [7], reduction of driving cost for 

hybrid electric vehicles [8], etc. 

GNP has been also applied to data mining [9, 10], where 

a large number of important association rules can be extracted 

from databases. The data mining method was applied to 

network intrusion detection systems [11] where misuse 

detection and anomaly detection were realized with high 

detection rates. 

In practical applications, the generalization ability has to 

be enhanced to adapt to various kinds of situations. Therefore, 

we propose a new structural optimization method of GNP in 

this paper. In the conventional GNP, even if a large number of 

nodes are prepared in a graph structure, only small parts of the 

nodes are used by evolution to create programs. The 

advantage of such evolutional result is the efficiency of the 

use of nodes, that is, only important nodes are selected to 

make rules. Thus, compact programs with effective action 

rules can be created. However, the disadvantage is that 

various kinds of action rules for adapting to various situations 

cannot be created only by the small parts of the program. To 

enhance the generalization ability, enough experiences in the 

training environments have to be stored in the evolved 

programs. Therefore, in this paper, we propose a method that 

sets mutation rates of initial nodes and other nodes at different 

values, respectively. In more detail, the mutation rate of initial 

nodes are set at high value to start the node transition from 

various places of graph structures, which contributes to use 

various nodes and more effective action rules can be created. 

The performance of the proposed method is evaluated by 

the Tile-World problem [12] that is one of the benchmark 

problems of multi-agent systems, where the fitness obtained 

in the training and testing environments are compared 

between the proposed method and the conventional method. 

This paper is organized as follows. Section 2 explains the 

evolution and the structure of GNP. Section 3 explains the 

algorithm of the proposed method. Section 4 explains the 

Tile-World problem, simulation conditions, and experimental 

results. Finally, section 5 is devoted to conclusions. 

 

2. Genetic Network Programming, GNP 

2.1 Basic structure and nodes 

The program of GNP consists of one initial node, several 

judgment nodes and processing nodes, and it can create 

complex rules by connecting the nodes as a directed graph as 

shown in Figure 1. 

 

    

Figure 1  The structure of GNP 

 

    An initial node has no judgment or action function, but a 

connection to another node to be executed. A judgment node 

has several connections to other nodes, and one of them is 

selected by if-then type branch decision function. The 

judgment function of each judgment node is assigned by the 

designer at the initialization of the population. A processing 

node has an action function and only one connection to 

another node, therefore, after executing the action, the node 

transition transfers to the next node according to the 

connection. 

    The program execution (node transition) starts from the 

initial node, and the connections of judgment and processing 

nodes create effective if-then rules. Therefore, the role of 

evolution is to optimize connections between nodes. The 

previous research did not pay enough attention to the 

evolution of the connections of initial nodes, and the 

connections of initial nodes were changed with low 

probability in the evolutional process. However, in this paper, 
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the mutation frequency of initial nodes is changed to larger in 

order to execute enough exploration of graph structures for 

enhancing the generalization ability, which is described in 

Section 3. 

2.2 Initialization of the population 

The procedure of creating initial individuals is as follows: 

(1) Prepare judgment nodes and processing nodes. The 

number of nodes in one individual is determined 

arbitrarily. 

(2) Randomly determine the connection of the initial node. 

(3) Assign judgment or processing function to each node. 

The number of functions and total number of nodes are 

determined depending on the problem. 

(4) Randomly determine the connections of judgment and 

processing nodes. But, the self-loop is prohibited. 

(5) Set the delay time [3], which is determined by the 

designer in advance. 

(6) Repeat (1)–(5) to generate the total number of individuals 

set in advance.  

2.3 Genetic Operation 

Some individuals for the next generation are created by 

crossover and others are created by mutation, which means 

that there are no individuals created by both genetic 

operations. In fact, if both operations are carried out, 

destructive effect on the graph structures may occur. 

2.3.1 Selection 

The elite individual is taken over the next generation by the 

elite selection. Tournament selection is also used for selecting 

parent individuals in crossover and mutation.  

2.3.2 Crossover 

Crossover is operated by the following procedure: 

(1) Two parent individuals are selected by executing 

tournament selection twice. 

(2) The nodes in the parent individuals are randomly chosen 

by the crossover rate. 

(3) Connections and node functions of the selected nodes are 

exchanged between the two parent individuals. 

2.3.3 Mutation  

Mutation is operated by the following procedure: 

(1) One parent individual is selected by executing 

tournament selection once. 

(2) Connections of each node in the parent individual are 

randomly selected by the mutation rate. 

(3) The selected connections are re-connected to other nodes 

randomly. 

 

3. The proposed Method 

In the conventional GNP, we found that there is a tendency of 

over-fitting to the training environments. Since it is necessary 

to cope with various situations as well as some specific 

situations in order to have good generalization ability, various 

kinds of rules should be learned during evolution. Thus, we 

propose a method of structural optimization for the 

improvement of generalization ability of GNP. 

3.1 Algorithm of the proposed method 

We focus on the evolution of the initial node and propose a 

method that changes the connections of initial nodes more 

frequently than the conventional method, which is operated 

by the following procedure: 

(1) When initializing individuals, the connection of the 

initial node in each individual is connected to one of the 

nodes in the graph structure randomly. Thus, the 

destinations of the connections from the initial nodes are 

different individual by individual. 

(2) In the mutation, the connection of the initial node in a 

parent individual is selected according to the mutation 

rate of initial node. In section 4, the mutation rate of 

initial node is experimentally determined and fixed 

every generation. In detail, the mutation rates of initial 

node {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are 

evaluated and that showing the best result (0.8) is used 

in the simulations.  

(3) The connections of the initial nodes selected in step (2) 

are re-connected to another node randomly. 

Actually, in the previous research, the effect of mutation 

rate of initial node was not analyzed in detail, however, it will 
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be clarified from the simulation results in Section 4 that 

relatively large mutation rate of initial node is effective for 

enhancing the generalization ability. In this paper, the 

mutation rate of initial node is experimentally determined, but 

the optimization of the mutation rate can be considered in the 

future. 

 

Figure 2  10 training environments 

 

Figure 3  10 testing (unknown) environments 

 

4. Simulations 

The generalization ability is evaluated by the Tile-World 

problem that is one of the benchmark problems of multi-agent 

systems, where the fitness obtained in the training and testing 

(unknown) environments is measured and the effectiveness of 

the proposed method is clarified. 

4.1 Tile-World 

Tile-World consists of floor, obstacles, three agents, three 

holes and three tiles. The task of the agents is to drop all the 

tiles into the holes. When a tile is dropped into a hole, the tile 

and hole will disappear, that is, the hole is filled with the tile 

and becomes floor. Fitness of each individual is measured by 

the following formula. 

 
 

 ,steps  timeremaining
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where, the remaining time steps is added to the fitness only 

when all the tiles are dropped into holes before reaching the 

time step limit. We use 20 training environments (Figure 2), 

which are 10 manually made environments and 10 randomly 

generated environments with some conditions/restrictions, e.g., 

the conditions guaranteeing the possibility of dropping tiles 

into holes. After measuring the fitness in the training 

environments, the elite individual in each generation is tested 

in 20 testing environments (Figure 3). The testing 

environments also consist of 10 manually made environments 

and 10 randomly generated environments. 

4.2 Nodes 

Four types of processing node functions and eight types of 

judgment node functions are prepared in the simulations, 

therefore, totally 12 kinds of functions are used (Table 1). 

Each individual is evolved by optimizing node connections. In 

the simulations, the number of nodes is set at 60, where five 

nodes for each kind of function are prepared, thus the total 

number of nodes is 60  125 . 

4.3 Parameters 

The parameter settings used in the simulations are shown in 

Table 2. Each value in Table 2 is determined referring to the 

previous work [3] and also adjusted experimentally through 

the simulations. 

Table 1  Node functions 

Processing nodes Judgment nodes 

(1) move forward (1) judge forward 

(2) turn right (2) judge backward 

(3) turn left (3) judge left side 

(4) stay (4) judge right side 

- (5) direction of the nearest tile 

from the agent 

- (6) direction of the nearest 

hole from the agent 

- (7) direction of the nearest 

hole from the nearest tile 

- (8) direction of the second 

nearest tile from the agent 
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4.4 Simulation results 

The average fitness obtained in the training environments is 

shown in Figure 4, and that in the testing environments is 

shown in Figure 5. As it can be seen from the figures, the 

proposed method obtains higher fitness than the conventional 

method with lower mutation rate in both training and testing 

environments. In particular, in the testing environments, the 

conventional method shows the convergence of fitness 

improvement around 100th generation, while the fitness of the 

proposed method still continues to improve after that. The 

larger mutation rate of initial node accelerates the evolution of 

the entire structure, which improves the fitness not only in the 

training environments but also in the testing environments. By 

starting program execution from different nodes, the 

optimization of the connections has been carried out 

efficiently. 

 

 

Figure 4  Fitness curves in the training environments 

 

 

Figure 5  Fitness curves in the testing environments 

4. Conclusion 

In this paper, we focused on analyzing the effect of mutation 

for initial nodes, and proposed a method that sets the mutation 

rates for initial nodes and other nodes at different values. In 

the comparison of the fitness between the proposed and 

conventional methods in the testing environments, it could be 

seen that the generalization ability was improved by 

introducing the proposed method. In the future, we will 

consider applying the proposed method to distributed Genetic 

Network Programming (DGNP), which is an extension of 

GNP [13] for dealing with much more complicated problems, 

to improve the generalization performance of DGNP. 
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