
International Journal of Engineering Innovation and Management Vol.6, No.2, 2016

13

A Structural Optimization Method of Genetic Network Programming

for Enhancing Generalization Ability

Shingo Mabu, Yamaguchi University, Japan, mabu@yamaguchi-u.ac.jp

Shun Gotoh, Yamaguchi University, Japan

Masanao Obayashi, Yamaguchi University, Japan, m.obayas@yamaguchi-u.ac.jp

Takashi Kuremoto, Yamaguchi University, Japan, wu@yamaguchi-u.ac.jp

Abstract: Genetic Network Programming (GNP), one of the evolutionary algorithms, has been proposed as an

extension of Genetic Algorithm (GA) and Genetic Programming (GP), and the distinguished evolutional abilities have

been verified. The program of GNP is represented by a directed graph structure and the node transition of the graph

structure represents action rules. In practical applications, the robustness and generalization ability are very important,

thus, we propose a method of structural optimization for enhancing the generalization ability of GNP in this paper, where

the connections of initial nodes of graph structures are changed by mutation more frequently than the conventional

method in order to use/evaluate variety of node combinations to create effective action rules. The generalization ability is

evaluated by the Tile-World problem that is one of the benchmark problems of multi-agent systems, where the fitness

obtained in the testing (unknown) environments is measured and the generalization ability of the proposed method is

clarified.

Key-Words: evolutionary computation, genetic network programming, graph structure, generalization, structural optimization

1. Introduction

Recently, soft computing techniques such as Neural Networks,

Fuzzy reasoning, and reinforcement learning are applied to

various fields, and their usefulness has been shown. The

advantage of the soft computing is that humans do not need to

prepare complete control rules, but computers can obtain the

flexible solutions.

Each of these approaches may require robustness and

generalization ability, that is, the ability to output the

appropriate solutions not only in the training environments,

but even in unknown environments. The robustness and

generalization ability are required for any approaches when

we consider the practical applications.

On the other hand, Genetic Network Programming

(GNP), one of the evolutionary algorithms, has been proposed

as an extension of Genetic Algorithm (GA) [1] and Genetic

Programming (GP) [2], and the distinguished evolutional

abilities have been verified [3] comparing to GP, GP with

automatic defined functions, and evolutionary programming

(EP) [4]. Originally, GNP was proposed because graph

structures basically have better representation abilities to

make programs than string and tree structures. For example,

node transitions in graph structures can make some repetitive

processes like subroutines because some nodes can be

repeatedly used by the node transition. In addition, after

starting the node transition in a graph structure, GNP executes

judgment nodes (if-then functions) and processing nodes

(action functions) according to the connections between nodes

without any terminal nodes. Thus, the node transition

implicitly memorizes the history of judgments and processing,

which contributes to the decision making in dynamic

environments because GNP can make decisions based not

Shingo Mabu, Shun Gotoh, Masanao Obayashi, Takashi Kuremoto:

A Structural Optimization Method of Genetic Network Programming for Enhancing Generalization Ability

14

only on the current, but also the past information [3]. GNP has

been applied to decision making systems such as stock trading

systems [5], elevator group supervisory control systems [6],

robot navigation systems [7], reduction of driving cost for

hybrid electric vehicles [8], etc.

GNP has been also applied to data mining [9, 10], where

a large number of important association rules can be extracted

from databases. The data mining method was applied to

network intrusion detection systems [11] where misuse

detection and anomaly detection were realized with high

detection rates.

In practical applications, the generalization ability has to

be enhanced to adapt to various kinds of situations. Therefore,

we propose a new structural optimization method of GNP in

this paper. In the conventional GNP, even if a large number of

nodes are prepared in a graph structure, only small parts of the

nodes are used by evolution to create programs. The

advantage of such evolutional result is the efficiency of the

use of nodes, that is, only important nodes are selected to

make rules. Thus, compact programs with effective action

rules can be created. However, the disadvantage is that

various kinds of action rules for adapting to various situations

cannot be created only by the small parts of the program. To

enhance the generalization ability, enough experiences in the

training environments have to be stored in the evolved

programs. Therefore, in this paper, we propose a method that

sets mutation rates of initial nodes and other nodes at different

values, respectively. In more detail, the mutation rate of initial

nodes are set at high value to start the node transition from

various places of graph structures, which contributes to use

various nodes and more effective action rules can be created.

The performance of the proposed method is evaluated by

the Tile-World problem [12] that is one of the benchmark

problems of multi-agent systems, where the fitness obtained

in the training and testing environments are compared

between the proposed method and the conventional method.

This paper is organized as follows. Section 2 explains the

evolution and the structure of GNP. Section 3 explains the

algorithm of the proposed method. Section 4 explains the

Tile-World problem, simulation conditions, and experimental

results. Finally, section 5 is devoted to conclusions.

2. Genetic Network Programming, GNP

2.1 Basic structure and nodes

The program of GNP consists of one initial node, several

judgment nodes and processing nodes, and it can create

complex rules by connecting the nodes as a directed graph as

shown in Figure 1.

Figure 1 The structure of GNP

 An initial node has no judgment or action function, but a

connection to another node to be executed. A judgment node

has several connections to other nodes, and one of them is

selected by if-then type branch decision function. The

judgment function of each judgment node is assigned by the

designer at the initialization of the population. A processing

node has an action function and only one connection to

another node, therefore, after executing the action, the node

transition transfers to the next node according to the

connection.

 The program execution (node transition) starts from the

initial node, and the connections of judgment and processing

nodes create effective if-then rules. Therefore, the role of

evolution is to optimize connections between nodes. The

previous research did not pay enough attention to the

evolution of the connections of initial nodes, and the

connections of initial nodes were changed with low

probability in the evolutional process. However, in this paper,

International Journal of Engineering Innovation and Management Vol.6, No.2, 2016

15

the mutation frequency of initial nodes is changed to larger in

order to execute enough exploration of graph structures for

enhancing the generalization ability, which is described in

Section 3.

2.2 Initialization of the population

The procedure of creating initial individuals is as follows:

(1) Prepare judgment nodes and processing nodes. The

number of nodes in one individual is determined

arbitrarily.

(2) Randomly determine the connection of the initial node.

(3) Assign judgment or processing function to each node.

The number of functions and total number of nodes are

determined depending on the problem.

(4) Randomly determine the connections of judgment and

processing nodes. But, the self-loop is prohibited.

(5) Set the delay time [3], which is determined by the

designer in advance.

(6) Repeat (1)–(5) to generate the total number of individuals

set in advance.

2.3 Genetic Operation

Some individuals for the next generation are created by

crossover and others are created by mutation, which means

that there are no individuals created by both genetic

operations. In fact, if both operations are carried out,

destructive effect on the graph structures may occur.

2.3.1 Selection

The elite individual is taken over the next generation by the

elite selection. Tournament selection is also used for selecting

parent individuals in crossover and mutation.

2.3.2 Crossover

Crossover is operated by the following procedure:

(1) Two parent individuals are selected by executing

tournament selection twice.

(2) The nodes in the parent individuals are randomly chosen

by the crossover rate.

(3) Connections and node functions of the selected nodes are

exchanged between the two parent individuals.

2.3.3 Mutation

Mutation is operated by the following procedure:

(1) One parent individual is selected by executing

tournament selection once.

(2) Connections of each node in the parent individual are

randomly selected by the mutation rate.

(3) The selected connections are re-connected to other nodes

randomly.

3. The proposed Method

In the conventional GNP, we found that there is a tendency of

over-fitting to the training environments. Since it is necessary

to cope with various situations as well as some specific

situations in order to have good generalization ability, various

kinds of rules should be learned during evolution. Thus, we

propose a method of structural optimization for the

improvement of generalization ability of GNP.

3.1 Algorithm of the proposed method

We focus on the evolution of the initial node and propose a

method that changes the connections of initial nodes more

frequently than the conventional method, which is operated

by the following procedure:

(1) When initializing individuals, the connection of the

initial node in each individual is connected to one of the

nodes in the graph structure randomly. Thus, the

destinations of the connections from the initial nodes are

different individual by individual.

(2) In the mutation, the connection of the initial node in a

parent individual is selected according to the mutation

rate of initial node. In section 4, the mutation rate of

initial node is experimentally determined and fixed

every generation. In detail, the mutation rates of initial

node {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0} are

evaluated and that showing the best result (0.8) is used

in the simulations.

(3) The connections of the initial nodes selected in step (2)

are re-connected to another node randomly.

Actually, in the previous research, the effect of mutation

rate of initial node was not analyzed in detail, however, it will

Shingo Mabu, Shun Gotoh, Masanao Obayashi, Takashi Kuremoto:

A Structural Optimization Method of Genetic Network Programming for Enhancing Generalization Ability

16

be clarified from the simulation results in Section 4 that

relatively large mutation rate of initial node is effective for

enhancing the generalization ability. In this paper, the

mutation rate of initial node is experimentally determined, but

the optimization of the mutation rate can be considered in the

future.

Figure 2 10 training environments

Figure 3 10 testing (unknown) environments

4. Simulations

The generalization ability is evaluated by the Tile-World

problem that is one of the benchmark problems of multi-agent

systems, where the fitness obtained in the training and testing

(unknown) environments is measured and the effectiveness of

the proposed method is clarified.

4.1 Tile-World

Tile-World consists of floor, obstacles, three agents, three

holes and three tiles. The task of the agents is to drop all the

tiles into the holes. When a tile is dropped into a hole, the tile

and hole will disappear, that is, the hole is filled with the tile

and becomes floor. Fitness of each individual is measured by

the following formula.

 ,steps timeremaining

holes the toclose tiles themake agents thecellsmany how10

 tilesdropped ofnumber the100Fitness

where, the remaining time steps is added to the fitness only

when all the tiles are dropped into holes before reaching the

time step limit. We use 20 training environments (Figure 2),

which are 10 manually made environments and 10 randomly

generated environments with some conditions/restrictions, e.g.,

the conditions guaranteeing the possibility of dropping tiles

into holes. After measuring the fitness in the training

environments, the elite individual in each generation is tested

in 20 testing environments (Figure 3). The testing

environments also consist of 10 manually made environments

and 10 randomly generated environments.

4.2 Nodes

Four types of processing node functions and eight types of

judgment node functions are prepared in the simulations,

therefore, totally 12 kinds of functions are used (Table 1).

Each individual is evolved by optimizing node connections. In

the simulations, the number of nodes is set at 60, where five

nodes for each kind of function are prepared, thus the total

number of nodes is 60 125 .

4.3 Parameters

The parameter settings used in the simulations are shown in

Table 2. Each value in Table 2 is determined referring to the

previous work [3] and also adjusted experimentally through

the simulations.

Table 1 Node functions

Processing nodes Judgment nodes

(1) move forward (1) judge forward

(2) turn right (2) judge backward

(3) turn left (3) judge left side

(4) stay (4) judge right side

- (5) direction of the nearest tile

from the agent

- (6) direction of the nearest

hole from the agent

- (7) direction of the nearest

hole from the nearest tile

- (8) direction of the second

nearest tile from the agent

International Journal of Engineering Innovation and Management Vol.6, No.2, 2016

17

4.4 Simulation results

The average fitness obtained in the training environments is

shown in Figure 4, and that in the testing environments is

shown in Figure 5. As it can be seen from the figures, the

proposed method obtains higher fitness than the conventional

method with lower mutation rate in both training and testing

environments. In particular, in the testing environments, the

conventional method shows the convergence of fitness

improvement around 100th generation, while the fitness of the

proposed method still continues to improve after that. The

larger mutation rate of initial node accelerates the evolution of

the entire structure, which improves the fitness not only in the

training environments but also in the testing environments. By

starting program execution from different nodes, the

optimization of the connections has been carried out

efficiently.

Figure 4 Fitness curves in the training environments

Figure 5 Fitness curves in the testing environments

4. Conclusion

In this paper, we focused on analyzing the effect of mutation

for initial nodes, and proposed a method that sets the mutation

rates for initial nodes and other nodes at different values. In

the comparison of the fitness between the proposed and

conventional methods in the testing environments, it could be

seen that the generalization ability was improved by

introducing the proposed method. In the future, we will

consider applying the proposed method to distributed Genetic

Network Programming (DGNP), which is an extension of

GNP [13] for dealing with much more complicated problems,

to improve the generalization performance of DGNP.

References:

[1] J. H. Holland, Adaptation in Natural and Artificial Systems,

University of Michigan Press (1975)

[2] J. R. Koza, Genetic Programming, On the Programming of

Computers by Means of Natural Selection, MIT Press (1992)

[3] S. Mabu, K. Hirasawa and J. Hu, A Graph-Based Evolutionary

Algorithm: Genetic Network Programming (GNP) and Its Extension

Using Reinforcement Learning, Evolutionary Computation, MIT

Press, Vol. 15, No. 3, pp. 369-398 (2007)

[4] D. B. Fogel, An introduction to simulated evolutionary

optimization, IEEE Trans. on Neural Networks, Vol. 5, No. 1, pp.

3-14 (1994)

[5] S. Mabu, K. Hirasawa, M. Obayashi, and T. Kuremoto, Enhanced

decision making mechanism of rule-based genetic network

programming for creating stock trading signals, Expert Systems with

Applications, Vol.40, No. pp. 6311-6320 (2013)

[6] A Double-Deck Elevator Group Supervisory Control System

Using Genetic Network Programming, K. Hirasawa, T. Eguchi, J.

Zhou, L. Yu, S. Markon, IEEE Trans. on Systems, Man and

Cybernetics, Part C, Vol. 38, No. 4, pp. 535-550, 2008/7

[7] S. Mabu, A. Tjahjadi and K. Hirasawa, Adaptability Analysis of

Genetic Network Programming with Reinforcement Learning in

Dynamically Changing Environments, Expert Systems with

Applications, Vol. 39, No. 16, pp. 12349-12357 (2012)

[8] K. Ishikawa, K. Nakazawa, T. Yamazaki, S. Furugori, T. Suetomi

Shingo Mabu, Shun Gotoh, Masanao Obayashi, Takashi Kuremoto:

A Structural Optimization Method of Genetic Network Programming for Enhancing Generalization Ability

18

and Y. Matsuoka, Reduction of the Driving Cost for Capacitor-Battery

Combined HEV by Using Genetic Network Programming, Trans. of

the Japan Society of Mechanical Engineers Ser. C, Vol. 79, No. 803,

pp. 2259-2272 (2013) (in Japanese)

[9] K. Shimada, K. Hirasawa and J. Hu, Genetic Network

Programming with Acquisition Mechanism of Association Rules,

Journal of Advanced Computational Intelligence and Intelligent

Informatics, Vol. 10, No. 1, pp. 102-111 (2006)

[10] K. Shimada, K. Hirasawa, and J. Hu, Class association rule

mining with chi-squared test using genetic network programming,

Proc. of the IEEE International Conference on Systems, Man and

Cybernetics, pp. 5338-5344 (2006).

[11] S. Mabu, C. Chen, N. Lu, K. Shimada and K. Hirasawa, An

Intrusion-Detection Model Based on Fuzzy Class-Association-Rule

Mining Using Genetic Network Programming, IEEE Trans. on

Systems, Man, and Cybernetics, Part C, Vol. 41, No. 1, pp. 130-139,

[12] M. E. Pollack and M. Ringuette: Introducing the tile-world:

Experimentally evaluating agent architectures, in Proc. of the

conference of the American Association for Artificial Intelligence, pp.

183-189 (1990)

[13] S. Mabu, K. Hirasawa, M. Obayashi and T. Kuremoto, Variable

size mechanism of distributed graph programs and its performance

evaluation in agent control problems, Expert Systems with

Applications, Vol. 41, No. 4, pp. 1663-1671 (2014)

