Inductive Sensing Based Accurate Rotation Angle Detection for Commercial Building Roller Blind

Joon Moon¹, JaeJeong Hwang²*
¹ JF Systems Ltd., Korea
² Kunsan National University, Korea

Abstract: In the commercial building such as huge enterprise building, more accurate operation of the center-controlled roller blind is necessary. We design, in this work, the target disc that its shape is nonlinearly changing and the sensor coils that are differentially arranged. The performance shows less than 1% accuracy when it is implemented in the roller blind.

Key Words: Inductive Sensing, Non-destructive Testing, Roller Blind, Rotation Angle Detection

1. Introduction

When a metal on the target is placed in close proximity to the sensor coil, the induced current produces a counter field that reduces the effective inductance of the sensor coil, thus changing the resonant frequency and electric voltage [1]. Using the phenomena, we can measure distance between two conductors.

In the application of roller blind, moving up and down, distance between two conductors is fixed but area of conductor may change depending on the rotation angle, since the sensor is located on the roller blind bracket. Figure 2 depicts the target and sensor coil that are overlapped when rotating. Though the thickness between two circles is linearly variable on the rotation angle, the overlapped area is nonlinearly changing.

2. Model for inductive sensor and target

The principle of inductive sensing is based on the variation of inductance when a conductive material, such as a metal object, is placed in a magnetic field of the sensor coil. Figure 1 shows an electrical model for inductive sensor and target material. The eddy current induced on the target is a function of distance, size, and composition of the conductor. The voltage across the sensor coil is represented by

\[
V_p = L_{SS} \frac{dI_1}{dt} - M \frac{dI_2}{dt}
\]

where \(L_{SS}\) and \(M\) denote inductance in the sensor coil and mutual inductance by interacting with the target. That is, inductance \(L_{SS}\) is affected by target inductance \(L_{ST}\).

3. Rotation angle detection for roller blind

Although the eddy current is a function of distance between sensor and target, we assume that the distance is fixed but area of conductor may change depending on the rotation angle, since the sensor is located on the roller blind bracket. Figure 2 depicts the target and sensor coil that are overlapped when rotating. Though the thickness between two circles is linearly variable on the rotation angle, the overlapped area is nonlinearly changing.
Sensor coil sets A and B are placed 90 degrees from each other, enabling the set A referred to as in-phase cosine shape and the set B referred to as quadrature sine shape. Data from each set is derived by differential operation as

\[D_A = D_{A+} - D_{A-} = \eta_A \cos(\theta) \]

\[D_B = D_{B+} - D_{B-} = \eta_B \sin(\theta) \]

Note that at position 0 degree, \(D_A \) becomes maximum and \(D_B \) becomes minimum. The sensitivity factor \(\eta_x \) equals 1, if the condition is ideal.

\[\theta = \begin{cases}
\arctan \left(\frac{D_B}{D_A} \right), & \text{if } D_A \geq 0 \text{ and } D_B \geq 0 \\
\arctan \left(\frac{D_B}{D_A} \right) + 180^\circ, & \text{if } D_A < 0 \\
\arctan \left(\frac{D_B}{D_A} \right) + 360^\circ, & \text{if } D_A \geq 0 \text{ and } D_B < 0
\end{cases} \]

Table 1 shows the result of accuracy of the roller blind set in terms of activation length and errors. When 30cm motion, maximum error of 2.4mm (around 0.8%) is resulted, that means highly accurate system.

4. Conclusion

We design the target disc that its shape is nonlinearly changing and the sensor coils that are differentially arranged. The performance shows less than 1% accuracy when it is implemented in the roller blind.

References:
