
SPIED2013 : Summer Program for Innovative Engineering Design

Software Setup for developing realtime application
with LEGO mindstorms NXT

Fumitake FUJII* , Dr. Eng.

* Mechanical Systems Control Laboratory, Graduate School of
 Science and Engineering, Yamaguchi University

1 Mechanical Systems Control Laboratory

SPIED2013 : Summer Program for Innovative Engineering Design

Before you begin

• Please make sure that your environment satisfies the
following requirements!

– You have a notebook PC in which Microsoft Windows is installed.

– Supported windows version : XP / Vista / 7 / 8

– You have the broadband internet connection (Some of the
software to be installed is several hundreds Mbytes in its size.)

– At least one USB 2.0 port available.

• If you are prepared, let’s start!

– Open the following internet web site.
http://lejos-osek.sourceforge.net/index.htm

Mechanical Systems Control Laboratory 2

http://lejos-osek.sourceforge.net/index.htm
http://lejos-osek.sourceforge.net/index.htm
http://lejos-osek.sourceforge.net/index.htm
http://lejos-osek.sourceforge.net/index.htm
http://lejos-osek.sourceforge.net/index.htm

SPIED2013 : Summer Program for Innovative Engineering Design

Entering nxtOSEK website

• Click “installation” link on the left of the screen

• You’ll then encounter the following screen. Click “Installation in Windows” link

and proceed.

Mechanical Systems Control Laboratory 3

Click here!

Click here!

SPIED2013 : Summer Program for Innovative Engineering Design

Follow the instructions given in the page

• What you have to do is simply follow the installation procedure from 1 to 4
one-by-one as designated on the webpage.

• Several cautions should be given to you on the 1st (cygwin installation) and
the 3rd (program uploader setup) steps.

Mechanical Systems Control Laboratory 4

This message is of particular importance!

SPIED2013 : Summer Program for Innovative Engineering Design

Tips in Installing cygwin

• There might be several steps which require your thoughts and decision while
installing cygwin.

• Read the following Q’s and A’s carefully before you proceed. Steps which are not
mentioned below, just follow the web instruction.

1. Which version of cygwin binaries should I choose ?
– You will be prompted to select 32bit / 64bit binaries of cygwin to install your PC. Choose

32 bit version even if your PC has 64bit OS installed.

2. Where do I setup the binaries ?
– I recommend you to install cygwin in the default location (c:¥cygwin). We can’t support

you during class if you have altered this installation location.

– Never use folder names which contain white space and/or multibyte characters.

3. Utility versions are different from the screenshots !
– You might encounter newer binaries during the installation of cygwin (as compared to

the screenshots provided in the webpage.)

– Never mind! Install the latest available for download.

4. What should I do at the end of installation ?
– Please don’t forget to create shortcut of cygwin shell on the desktop.

Mechanical Systems Control Laboratory 5

SPIED2013 : Summer Program for Innovative Engineering Design

Choice of uploader and installing nxtOSEK

• In step 3, you have to choose one program uploader from the table.
– Out legos are equipped with John Hansen’s Enhanced NXT firmware.

– You should then follow the instructions described under “Set up nxtOSEK
program upload software for the Enhanced NXT firmware” and install the
following 2 utilities. You don’t need to download Enhanced Firmware.
• LEGO MINDSTORMS USB FANTOM Driver

• John Hansen’s NeXTTool. Extract the archive to c:¥cygwin¥nexttool. (if cygwin is
installed in the default location)

• The final step is to install “nxtOSEK”.
– First, go back to the top page of nxtOSEK website (displayed in page 3 of this

handout) and click “Downloads” link.

– Click “nxtOSEK 2.18” link on the top of the page and choose to download
“nxtOSEK-v218.zip” from the source-forge web site.

– Save it to an appropriate location of your hard drive and extract it.

– Copy nxtOSEK folder to c:¥cygwin.

Mechanical Systems Control Laboratory 6

SPIED2013 : Summer Program for Innovative Engineering Design

If your installations are going properly…

• Your “c:¥cygwin” folder now should look like this.

• Check the existence of nexttool and nxtOSEK folders here.

• If they can’t be seen here, you did something wrong during the procedure.

Mechanical Systems Control Laboratory 7

SPIED2013 : Summer Program for Innovative Engineering Design

Choice of uploader and installing nxtOSEK

• In addition to 4-step installation of nxtOSEK, we have to set up sg.exe utility.

– Show “nxtOSEK installation” page as partly shown in the bottom of p.3 of this
handout by clicking “back” button several times in your web browser.

– Then you see the following screen. Click the link on the bottom of the box.

Mechanical Systems Control Laboratory 8

Then, click this link.

Click here !

SPIED2013 : Summer Program for Innovative Engineering Design

Grabbing sg.exe

• Then you will see the screen containing the image below. Click the link
“ATK1 Release 1.0” in the table.

– Save the file anywhere you like and extract it.

– Then a new folder “atk1-1.0” will appear. Change current folder by following
the path ./atk1-1.0/toppers_atk1/sg and copy sg.exe there to
c:/cygwin/nxtOSEK/toppers_osek/sg directory.

• You should then go back to nxtOSEK installation and edit the file
c:/cygwin/nxtOSEK/ecrobot/tool_gcc.mak as instructed in the webpage to suit
to your installation.

Mechanical Systems Control Laboratory

9

Click here !

SPIED2013 : Summer Program for Innovative Engineering Design

Setup the software link.

• Execute cygwin shell by double-clicking the shortcut icon.

• When cygwin shell window is raised, type the following command in the
captured image as it is with your keyboard (This is called CUI operation. CUI is an
acronym of “Character User Interface.)

• Then type cd c:/cygwin and press enter. After that, type ls and press enter.

• If you can see a GNUARM in the list, the ln –s command has executed
successfully.

Mechanical Systems Control Laboratory 10

SPIED2013 : Summer Program for Innovative Engineering Design

Check software installation.

• If it is all OK, let’s try to make an nxtOSEK application here.

• Type in the following command on the cygwin bash shell.

– cd /cygdrive/c/cygwin/nxtOSEK/samples_c/helloworld

– make all

• A number of echo backs will be displayed, but don’t worry. You have to troubleshoot
something only when the procedure stops with “Error” in the display.

• The make utility compiles all source files, link necessary libraries and generate program
which can only be executed in LEGO. If “make all” finishes successfully, you can see
following files generated under “helloworld” directory.

• This kind of software development environment is called “cross development.”

Mechanical Systems Control Laboratory 11

SPIED2013 : Summer Program for Innovative Engineering Design

You can use eclipse to build nxtOSEK applications.

• nxtOSEK application development can be done with Integrated Development
Environment (IDE for short) software called Eclipse, if you have successfully
installed necessary software as instructed in the previous pages.

• We have successfully tested the latest version of Eclipse (version 4.3: Kepler)
and Eclipse IDE for C/C++ Developers.

• SPIED 2013 attendants are strongly encouraged to setup Eclipse and Eclipse
C/C++ IDE in their computer.

• Please visit the homepage http://www.eclipse.org/downloads/ to get the latest
version. Both are available from this download page.

Mechanical Systems Control Laboratory 12

http://www.eclipse.org/downloads/

SPIED2013 : Summer Program for Innovative Engineering Design

Realtime Programming for Control of LEGO NXT
Using nxtOSEK

Mechanical Systems Control Laboratory 13

Fumitake FUJII* , Dr. Eng.

* Mechanical Systems Control Laboratory, Graduate School of
 Science and Engineering, Yamaguchi University, Japan

SPIED2013 : Summer Program for Innovative Engineering Design

What is RTOS ? (1) – Multitasking

• Multitask OS

Mechanical Systems Control Laboratory 14

Low level I/O

High level Software execution

CPU

request
True / False Question

Single core CPU can do
multiple jobs simultaneously.

SPIED2013 : Summer Program for Innovative Engineering Design

What is RTOS ? (2) – Preemptive Multitasking

• Multitasking in reality
– Multitasking is implemented by time sharing

• 1) dividing CPU process time to pieces by OS in a specified manner.
• 2) Assigning CPU time to applications which are

– waiting in cue and
– have the highest priority

if CPU is released by some other application (CPU time is controlled by
Application)

• Then assigning available CPU time to processes waiting in cue.

– In this way, a PC is seen as doing multiple jobs simultaneously.
• Strategy 1) --- Preemptive Multitasking
• Strategy 2) --- Non-preemptive Multitasking

Mechanical Systems Control Laboratory 16

True / False Question
Single Core CPU can do

multiple jobs simultaneously. The answer is …

SPIED2013 : Summer Program for Innovative Engineering Design

Preemptive multitasking

A B C A B C A B C

Mechanical Systems Control Laboratory 17

CPU time

task A task B task C

Time

Note:
 Assigned CPU time to multiple tasks may vary according to the status of tasks.
For example, an application will be given less CPU time if it is in idle status and/or
it does not require long CPU time.

This is an example of round-robin type scheduling.
Execution order is dependent on task priority.

SPIED2013 : Summer Program for Innovative Engineering Design

Enrich your IT vocabulary

• Thread
– A minimum unit of execution of a computer code to which CPU time is given

in multitasking / parallel processing.

– Important relation

• Multi-threading
– A time sharing system where

thread is used as a unit of execution.

– A single application can be divided
into multiple threads.

Mechanical Systems Control Laboratory 18

A thread < An application (in size and required resources) A thread < An application (in size and required resources)

Fig. Multi-threading (courtesy of ti.com)

SPIED2013 : Summer Program for Innovative Engineering Design

Finally, what is RTOS ?

• Definition
– A real time OS (RTOS) is a preemptive multi-threading operating system

which can perform CPU time scheduling in real time.

Mechanical Systems Control Laboratory 19

Task A3 : Command output

10 [ms]

Task B : logging 50 [ms]

Task C (background) : display info update

A Typical Control
Application

Task A1 : Measurement

Task A2 :
Control law calculation

These 3 tasks should
be executed in

parallel.

SPIED2013 : Summer Program for Innovative Engineering Design

Let’s start nxtOSEK programming.

• Let’s start our OSEK programming with a fairly simple example.
– Start your eclipse. Then point “File” → “New” → “C Project” as shown below.

Mechanical Systems Control Laboratory 20

SPIED2013 : Summer Program for Innovative Engineering Design

Making a new C project with eclipse

• An window will be raised. Specify
following parameters

1. Project name
– Specify “example” here.

2. Project type
– Choose “Makefile project” &

“Empty Project” as shown.

3. Toolchains
– Choose “Cross GCC” this time.

• You can alter project location by

de-selecting “Use default
location” if you would like to do
so.

• However, please be notified that
it may affect the descriptions later.

※ Click “Finish” button to proceed.

Mechanical Systems Control Laboratory 21

SPIED2013 : Summer Program for Innovative Engineering Design

Ready for programming : Example 1

• Then you will come up with “example1” project in your “Project
explorer” in your eclipse.

• Now you have to edit the following 3 files to be added to this project.

1. example1.c (Body of task description written in C-language)

2. example1.oil (This file dictates how you control the motion of the task
coded in example1.c.)

3. Makefile (It specifies how final executable should be generated.)

Mechanical Systems Control Laboratory 22

SPIED2013 : Summer Program for Innovative Engineering Design

example1.c

• Add a C-source file “example1.c” to example1 project and edit it.

Mechanical Systems Control Laboratory 23

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

void user_1ms_isr_type2(void){}

DeclareTask(OSEK_Task1) ;

TASK(OSEK_Task1){
 while(1){
 display_clear(0) ;
 display_goto_xy(5,3) ;
 display_string("Task1") ;
 display_update() ;
 systick_wait_ms(1000) ;

 display_clear(0) ;
 display_goto_xy(5,5) ;
 display_string("Task2") ;
 display_update() ;
 systick_wait_ms(1000) ;
 }
}

Important Note : All codes are case sensitive. If you make a ‘case-insensitive’ mistake, you
will be trapped in a link error which is difficult to find the cause of the trouble.

SPIED2013 : Summer Program for Innovative Engineering Design

example1.oil

• Save following text as “example1.oil”.

Mechanical Systems Control Laboratory 24

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 STATUS = EXTENDED;
 STARTUPHOOK = FALSE;
 ERRORHOOK = FALSE;
 SHUTDOWNHOOK = FALSE;
 PRETASKHOOK = FALSE;
 POSTTASKHOOK = FALSE;
 USEGETSERVICEID = FALSE;
 USEPARAMETERACCESS = FALSE;
 USERESSCHEDULER = FALSE;
 };

 /* Definition of application mode */
 APPMODE appmode1{};

 /* Definition of OSEK_Task1 */
 /* Task name OSEK_Task1 should be consistent
to the name used in your source file */
 TASK OSEK_Task1
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1;
 };
 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };
 };

SPIED2013 : Summer Program for Innovative Engineering Design

Makefile

• The Makefile

Mechanical Systems Control Laboratory 25

Target specific macros
TARGET = example1

TARGET_SOURCES = ¥
 example1.c

TOPPERS_OSEK_OIL_SOURCE = ./example1.oil

Don't modify below part

O_PATH ?= build

include /cygdrive/c/cygwin/nxtOSEK/ecrobot/ecrobot.mak

• Full-path of “ecrobot.mak”
will vary depending on
where you put your
nxtOSEK installation.

• Do not use MS-DOS type
path description.

SPIED2013 : Summer Program for Innovative Engineering Design

Compiling the project and send it to LEGO.

• Once you completed preparing these files, try making the binary.

• Build a project
– Select “example1” project in project explorer window. (This can be done by

single clicking the project)

– “Build” (in the menu) → “Build project”

• Copy it to LEGO NXT
– Connect you lego with your PC with USB and power on.

– “Run” (in the menu) → “External tools” → “ rxeflash.sh”
(If you have successfully configured you eclipse install.)

Mechanical Systems Control Laboratory 26

These 3 statements prove your
success in building you project.

SPIED2013 : Summer Program for Innovative Engineering Design

What will happen with your LEGO ?

Mechanical Systems Control Laboratory 27

A splash – It comes after you
have selected a particular OSEK

application.

Main screen of main monitor
(caution : your application is

not running yet.)

How to control execution of your application. (EXIT=shutdown)

Just after you have power
on your brick

SPIED2013 : Summer Program for Innovative Engineering Design

The OIL file

• OIL = Osek Implementation Language
– The OIL file describes OS properties, resource configurations, as well as how

your threads(tasks) are being executed.

Mechanical Systems Control Laboratory 28

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 ….
 } ;

 APPMODE appmode1{} ;

 TASK Task1
 {
 ….
 } ;

 TASK Task2
 {
 ….
 } ;
 COUNTER SysTimerCnt
 {
 ….
 } ;
 ALARM periodic_alarm1
 {
 ….
 } ;
} ;

Red colored keywords are called “objects.”

SPIED2013 : Summer Program for Innovative Engineering Design

OBJECTS of OIL file

• Here we summarize possible OBJECTS to be included in an oil file.

Mechanical Systems Control Laboratory 29

OBJECT Name Description

CPU
Specifies CPU to be used. This object is used as a container
of all other objects. Should not be altered.

OS Used to define OS properties. Should not be altered.

APPMODE
This object defines an application mode. At least 1
application mode is necessary.

TASK
This object determines how your corresponding task is
executed. An OIL can possibly contain more than 2 TASK
obejects if your application is multi-task.

COUNTER
This objet defines a periodic counter. It is used to define an
activation interval of a task which is executed periodically.

ALARM
This object defines a periodic counter using COUNTER
object as previously defined.

SPIED2013 : Summer Program for Innovative Engineering Design

Details of example1.oil (1)

Mechanical Systems Control Laboratory 30

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 STATUS = EXTENDED;
 STARTUPHOOK = FALSE;
 ERRORHOOK = FALSE;
 SHUTDOWNHOOK = FALSE;
 PRETASKHOOK = FALSE;
 POSTTASKHOOK = FALSE;
 USEGETSERVICEID = FALSE;
 USEPARAMETERACCESS = FALSE;
 USERESSCHEDULER = FALSE;
 };

This is an OS object.
You should not alter/omit these descriptions
in your nxtOSEK programming.

This is a CPU object.
Do not alter this line. This is a CPU used in
LEGO NXT.

SPIED2013 : Summer Program for Innovative Engineering Design

example1.oil

Mechanical Systems Control Laboratory 31

 /* Definition of application mode */
 APPMODE appmode1{};

 /* Definition of OSEK_Task1 */
 /* Task name OSEK_Task1 should be consistent
to the name used in your source file */
 TASK OSEK_Task1
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1;
 };
 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

};

This is an APPMODE object.
Use this line as it is.

This is a TASK object.
This object includes several important attributes which
should be defined here.

AUTOSTART : Specifies whether the task has been
activated on startup or not. If you choose “TRUE,” then
APPMODE should be specified. If else you choose
“FALSE,” APPMODE will be specified by the task
activator.
PRIORITY : A positive integer should be assigned.
Possible value is 1 to 16. Value 1 is the lowest priority.
Value 16 is the highest. It only takes some meaning if
there are more than 2 tasks in your application.
SCHEDULE : If you prefer preemptive multitasking, you
should specify “FULL” here; otherwise you should put
“NON” here. Always choose “FULL” during this class.
ACTIVATION : Number of activations of a task. This
should be “1” unless otherwise stated.

SPIED2013 : Summer Program for Innovative Engineering Design

Summary : What you have specified so far in your OIL

• You now understand the following
– In example1 application, there is only one task which should be named

“OSEK_Task1.”

– The task “OSEK_Task1” has the lowest priority.

• However, it does not have any specific meaning because
there is only one task defined.

– The task “OSEK_Task1” is automatically invoked when the application is
executed.

Mechanical Systems Control Laboratory 32

SPIED2013 : Summer Program for Innovative Engineering Design

example1.c

• Add a C-source file “example1.c” to example1 project and edit it.

Mechanical Systems Control Laboratory 33

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

void user_1ms_isr_type2(void){}

DeclareTask(OSEK_Task1) ;

TASK(OSEK_Task1){
 while(1){
 display_clear(0) ;
 display_goto_xy(5,3) ;
 display_string("Task1") ;
 display_update() ;
 systick_wait_ms(1000) ;

 display_clear(0) ;
 display_goto_xy(5,5) ;
 display_string("Task2") ;
 display_update() ;
 systick_wait_ms(1000) ;
 }
}

What it will do:
• This task displays a message “Task1” and

“Task2” alternately and endlessly.
• Display flush interval is 1 [s].

Name of the task which is
identical to OIL definition.
Name of the task which is
identical to OIL definition.

SPIED2013 : Summer Program for Innovative Engineering Design

Makefile

• Makefile
– It determines the action of the CUI utility “make.” “make” makes executable of an

application in a specified way as described in “Makefile.”

– So the name of the file “Makefile” has a special role and meaning. You should not
change the name.

– Makefile is automatically recognized by eclipse.

Mechanical Systems Control Laboratory 34

Target specific macros
TARGET = example1

TARGET_SOURCES = ¥
 example1.c

TOPPERS_OSEK_OIL_SOURCE = ./example1.oil

Don't modify below part

O_PATH ?= build

include /cygdrive/c/cygwin/nxtOSEK/ecrobot/ecrobot.mak

You should change red-
colored part depending

on your program name and
software installation.

SPIED2013 : Summer Program for Innovative Engineering Design

Example 2 : Driving nxt motors

• Let’s drive motors with your OSEK application.

Mechanical Systems Control Laboratory 35

Connect your NXT brick to your PC with USB cable. Plug a motor unit to
port A, the other to port B using the cable supplied with your group’s LEGO
set.

SPIED2013 : Summer Program for Innovative Engineering Design

motor1.c

• Create a new project “motor1” in your eclipse and add the following C source

to the project.

Mechanical Systems Control Laboratory 36

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

void ecrobot_device_initialize(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 0, 0) ;
}

void ecrobot_device_terminate(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 0, 0) ;
}

void user_1ms_isr_type2(void){}

DeclareTask(Task1) ;

TASK(Task1){
 nxt_motor_set_speed(NXT_PORT_A, 70, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 70, 0) ;
 systick_wait_ms(2000) ; /* wait for 2 seconds */
 nxt_motor_set_speed(NXT_PORT_A, 80, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, -80, 0) ;

 systick_wait_ms(2000) ;

 nxt_motor_set_speed(NXT_PORT_A, 0, 1) ; /* brake
mode */
 nxt_motor_set_speed(NXT_PORT_B, 0, 1) ; /* brake
mode */

 display_string("That's all!") ;
 display_update() ;

 TerminateTask() ;
}

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

motor1 : motor1.oil

• OIL : motor1.oil

37

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 STATUS = EXTENDED;
 STARTUPHOOK = FALSE;
 ERRORHOOK = FALSE;
 SHUTDOWNHOOK = FALSE;
 PRETASKHOOK = FALSE;
 POSTTASKHOOK = FALSE;
 USEGETSERVICEID = FALSE;
 USEPARAMETERACCESS = FALSE;
 USERESSCHEDULER = FALSE;
 };

/* Definition of application mode */
 APPMODE appmode1{};

 /* Definition of motor1 */
 TASK Task1
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1;
 };
 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };
};

SPIED2013 : Summer Program for Innovative Engineering Design

motor1 : Makefile

• Only corresponding file names are modified in Makefile description.

Mechanical Systems Control Laboratory 38

Target specific macros
TARGET = motor1

TARGET_SOURCES = ¥
 motor1.c

TOPPERS_OSEK_OIL_SOURCE = ./motor1.oil

Don't modify below part

O_PATH ?= build

include /cygdrive/c/cygwin/nxtOSEK/ecrobot/ecrobot.mak

SPIED2013 : Summer Program for Innovative Engineering Design

motor1 : Let’s try

Mechanical Systems Control Laboratory 39

When you are ready, flash your program to LEGO.
Then see what will happen when it is executed.

SPIED2013 : Summer Program for Innovative Engineering Design

ECRobot API

• What is ECRobot API ?

– ECRobot API is a set of library functions which provides programming interface to
utilize features available with your LEGO NXT.

– As an application programmer, you can integrate sensors, motors into your robot
system. It can be controlled by your program with the use of APIs.

– You can also use internal functions of NXT brick (like bluetooh, some communication
protocols) to make your system sophisticated by using appropriate APIs.

• API for controlling motor motion.

– void nxt_motor_set_speed(U32 PORT, int speed_percent, int brake)

– Arguments

• PORT : Specifies the PORT to which the motor is connected. (NXT_PORT_A, NXT_PORT_B,
NXT_PORT_C)

• speed_percent: -100 to 100 (Should be an integer)

• brake : 0 (float) or 1 (brake)

– If 0 is chosen, then the motor gradually looses the velocity (if speed=0) and will stop after a while.

– If 1 is specified, then the motor stops almost immediately.

Mechanical Systems Control Laboratory 40

SPIED2013 : Summer Program for Innovative Engineering Design

Initialize and terminate functions

Mechanical Systems Control Laboratory 41

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

void ecrobot_device_initialize(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 0, 0) ;
}

void ecrobot_device_terminate(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 0, 0) ;
}

void user_1ms_isr_type2(void){}

DeclareTask(Task1) ;

TASK(Task1){
 nxt_motor_set_speed(NXT_PORT_A, 70, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, 70, 0) ;
 systick_wait_ms(2000) ; /* wait for 2 seconds */
 nxt_motor_set_speed(NXT_PORT_A, 80, 0) ;
 nxt_motor_set_speed(NXT_PORT_B, -80, 0) ;

 systick_wait_ms(2000) ;

 nxt_motor_set_speed(NXT_PORT_A, 0, 1) ; /* brake
mode */
 nxt_motor_set_speed(NXT_PORT_B, 0, 1) ; /* brake
mode */

 display_string("That's all!") ;
 display_update() ;

 TerminateTask() ;
}

This function is being executed
when you start your program.

This function is being executed
when you stop your program.

SPIED2013 : Summer Program for Innovative Engineering Design

Tips in reading the API reference

• Since nxtOSEK is an programming environment to develop
embedded system application, there are some dialects which
you’d better know.

• Variable type aliases used in the reference.
– U8 : unsigned char

– S8 : char

– U16 : unsigned short

– S16 : short

– U32 : unsigned int

– S32 : int

Mechanical Systems Control Laboratory 42

SPIED2013 : Summer Program for Innovative Engineering Design

Example 3 : Multitask

• We will define 2 tasks (named Task1 and Task2) executed in sequel.

• Priorities of the tasks
– Task 1 --- Assigned lowest priority 1.

– Task 2 --- Relatively higher priority 2.

Mechanical Systems Control Laboratory 43

See what will happen when it is executed.
(C source, OIL and the Makefile are given in the preceding pages)

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

TASK(Task1){
 int i ;
 for(i = 0 ; i < COUNT ; i++){
 display_goto_xy(0,1) ;
 display_string("task1 = ") ;
 display_goto_xy(6,1) ;
 display_int(i,5) ;
 display_update() ;
 systick_wait_ms(10) ;
 }
 TerminateTask() ;
}

Example3 : twotasks.c

44

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

#define COUNT 501
DeclareTask(Task1) ;
DeclareTask(Task2) ;

/* Hooking 1[ms] timer */
void user_1ms_isr_type2(void){}

TASK(Task2){
 int j ;

 for(j = 0 ; j < COUNT ; j++){
 display_goto_xy(0,2) ;
 display_string("task2 = ") ;
 display_goto_xy(6,2) ;
 display_int(j,5) ;
 display_update() ;
 systick_wait_ms(10) ;
 }

 TerminateTask() ;
}

What it will do:
• This task displays a messege “Task1” and

“Task2” alternately and endlessly.
• Display flush interval is 1 [s].

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

Example 3 : twotasks.oil

45

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 /* omitting details of OS section */
 };
 /* Definition of application mode */
 APPMODE appmode1{};

 /* Definition of Task1 */
 TASK Task1
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1 ;
 } ;

 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };
 /* Definition of Task2 */
 TASK Task2
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1 ;
 } ;
 PRIORITY = 2; /* has higher priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };
};

[Discussion] Which task will be executed first ? Task 1 or Task 2 ?
Discuss with your teammates.

SPIED2013 : Summer Program for Innovative Engineering Design

Example 2 : Makefile

Mechanical Systems Control Laboratory 46

Target specific macros
TARGET = twotasks

TARGET_SOURCES = ¥
 twotasks.c

TOPPERS_OSEK_OIL_SOURCE = ./twotasks.oil

Don't modify below part

O_PATH ?= build

include /cygdrive/c/cygwin/nxtOSEK/ecrobot/ecrobot.mak

What was modified as compared to previous Makefile are colored red.

SPIED2013 : Summer Program for Innovative Engineering Design

[Optional] What priority means to task execution

• In class assignment

– Modify the priority setting in “exercise2.oil” file as
shown below, and try to execute the application.

• Priority of Task1 → 2

• Priority of Task2 → 1

– See what happens. Carefully observe the changes.

Mechanical Systems Control Laboratory 47

SPIED2013 : Summer Program for Innovative Engineering Design

This page is intentionally
left blank.

Mechanical Systems Control Laboratory 48

SPIED2013 : Summer Program for Innovative Engineering Design

Example 4 : Realtime Multitask

• We will define 2 tasks (named Task1 and Task2) executed in parallel.

• Priorities of the tasks
– Task 1 --- Assigned lowest priority 1.

– Task 2 --- Relatively higher priority 2.

• Periodic execution
– Task 1 --- Executed in every 20 [ms].

– Task 2 --- Executed in every 20 [ms].

Mechanical Systems Control Laboratory 49

See what will happen when it is executed.
(C source, OIL and the Makefile are given in the preceding pages)

SPIED2013 : Summer Program for Innovative Engineering Design

Exercise 4 : Real Multitasking (para2tasks.c)

Mechanical Systems Control Laboratory 50

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

#define COUNT 501

DeclareCounter(SysTimerCnt) ;
DeclareTask(Task1) ;
DeclareTask(Task2) ;

/* Hooking 1[ms] timer */
void user_1ms_isr_type2(void)
{
 SignalCounter(SysTimerCnt) ; /* Increment cnt */
}

TASK(Task1){
 static int i=0 ;

 if(i <= COUNT){
 display_goto_xy(0,1) ;
 display_string("task1 = ") ;
 display_goto_xy(8,1) ;
 display_int(i,5) ;
 display_update() ;
 i++ ;

} else {
 display_goto_xy(0,4) ;
 display_string("TASK1 Terminated") ;
 display_update() ;
 }
 TerminateTask() ;
}

TASK(Task2){
 static int j=0 ;

 if(j <= COUNT){
 display_goto_xy(0,2) ;
 display_string("task1 = ") ;
 display_goto_xy(8,2) ;
 display_int(j,5) ;
 display_update() ;
 j++ ;
 } else {
 display_goto_xy(0,5) ;
 display_string("TASK2 Terminated") ;
 display_update() ;
 }
 TerminateTask() ;
}

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

Example 4 : para2tasks.oil

51

#include “implementation.oil”
CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 // omitted hence it’s completely same as before
 };

 /* Definition of application mode */
 APPMODE appmode1{};

 TASK Task1 /* Definition of Task1 */
 {
 AUTOSTART = FALSE ;
 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

 TASK Task2 /* Definition of Task2 */
 {
 AUTOSTART = FALSE ;
 PRIORITY = 2; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

 COUNTER SysTimerCnt
 {
 MINCYCLE = 1 ;
 MAXALLOWEDVALUE = 10000 ;
 TICKSPERBASE = 1 ; /* 1[tick] = 1[ms] */
 } ;
 ALARM periodic_alarm1
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task1 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ;
 APPMODE = appmode1 ;
 } ;
 } ;
 ALARM periodic_alarm2
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task2 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ;
 APPMODE = appmode1 ;
 } ;
 } ;
} ;

SPIED2013 : Summer Program for Innovative Engineering Design

Example 4 : Makefile

• Only corresponding file names are modified in Makefile description.

Mechanical Systems Control Laboratory 52

Target specific macros
TARGET = para2tasks

TARGET_SOURCES = ¥
 para2tasks.c

TOPPERS_OSEK_OIL_SOURCE = ./para2tasks.oil

Don't modify below part

O_PATH ?= build

include /cygdrive/c/cygwin/nxtOSEK/ecrobot/ecrobot.mak

SPIED2013 : Summer Program for Innovative Engineering Design

Example 4 : Test run.

• There are 2 tasks defined in the C source and the oil file.

• Please be aware that C source is different from the one used in the
previous example 3.

Mechanical Systems Control Laboratory 53

Seeing is believing!
See what will happen when it is executed.

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

Example 4 : para2tasks.oil

54

#include “implementation.oil”
CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 // omitted hence it’s completely same as before
 };

 /* Definition of application mode */
 APPMODE appmode1{};

TASK Task1 /* Definition of Task1 */
 {
 AUTOSTART = FALSE ;
 PRIORITY = 1; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

TASK Task2 /* Definition of Task2 */
 {
 AUTOSTART = FALSE ;
 PRIORITY = 2; /* relatively high priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

COUNTER SysTimerCnt
 {
 MINCYCLE = 1 ;
 MAXALLOWEDVALUE = 10000 ;
 TICKSPERBASE = 1 ; /* 1[tick] = 1[ms] */
 } ;
 ALARM periodic_alarm1
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task1 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ; /* in [ms] */
 APPMODE = appmode1 ;
 } ;
 } ;
 ALARM periodic_alarm2
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task2 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ;
 APPMODE = appmode1 ;
 } ;
 } ;
} ;

Task 1 in invoked
by periodic_ alarm1

 in every 20[ms].

Task 2 in invoked
by periodic_alarm2

in every 20[ms].

SPIED2013 : Summer Program for Innovative Engineering Design

Interrupt handler and hook (1)

• Every CPU has signal pins labeled “intXX.” This is a logical signal line to tell CPU
that external devices requires immediate service.

• This logical scheme is called “interrupt”. How to handle interrupt request should
also be provided as a program. The program to serve for interrupt request is
specifically called “interrupt handler.”

Mechanical Systems Control Laboratory 55

#include <stdio.h>

void main(){
 int x, y, z ;
 double a, b, c ;

 …

 printf(…) ;
}

Currently running application

Click ! Click !

Mouse is
clicked !
Mouse is
clicked !

SPIED2013 : Summer Program for Innovative Engineering Design

Interrupt handler and hook (2)

• High level operating system (MS windows / MacOS / linux …) has its own
interrupt handler for every possible interrupt.

Mechanical Systems Control Laboratory 56

#include <stdio.h>

void main(){
 int x, y, z ;
 double a, b, c ;

 …

 printf(…) ;
}

Currently running application

Click ! Click !
Mouse is
clicked !
Mouse is
clicked !

int* mouse_interrupt(){
 /* read mouse status */
 /* read coordinates of clicked point */
}

Built-in interrupt handler in OS

CPU go backs to the
interrupted application
and restart its execution

Is it possible to execute your original code when interrupt is detected ?
The answer is YES!

SPIED2013 : Summer Program for Innovative Engineering Design

Interrupt handler and hook (3)

• To insert your original code before the built-in interrupt handler, you have to
hook your code a built-in handler, as can be depicted in the figure.

Mechanical Systems Control Laboratory 57

Main application

Interrupt
detected

Your interrupt
service code

Built-in handler

CPU comes back and
continues execution

Your interrupt service code
is hooked on the CPU process cue.

Time

SPIED2013 : Summer Program for Innovative Engineering Design

Three hooks available in nxtOSEK

• void ecrobot_device_initialize(void)
– This is a start up hook.

– Codes inside this function will be executed at startup of NXT brick.

– Should contain initialization of sensors and connections.

• void ecrobot_device_terminate(void)
– This is a close down hook.

– Codes inside this function will be executed at closing down of NXT brick.

– Should contain inactivation and termination of connections.

• void user_1ms_isr_type2(void)
– This is a hook for 1[ms] timer interrupt.

– Task cycletime will be generated by this function. Use SignalCounter function
to increment system timer count.

Mechanical Systems Control Laboratory 58

SPIED2013 : Summer Program for Innovative Engineering Design

Exercise 4 : Real Multitasking (para2tasks.c)

Mechanical Systems Control Laboratory 59

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"

#define COUNT 501

DeclareCounter(SysTimerCnt) ;
DeclareTask(Task1) ;
DeclareTask(Task2) ;

/* Hooking 1[ms] timer */
void user_1ms_isr_type2(void)
{
 SignalCounter(SysTimerCnt) ; /* Increment cnt */
}

TASK(Task1){
 static int i=0 ;

 if(i <= COUNT){
 display_goto_xy(0,1) ;
 display_string("task1 = ") ;
 display_goto_xy(8,1) ;
 display_int(i,5) ;
 display_update() ;
 i++ ;

} else {
 display_goto_xy(0,4) ;
 display_string("TASK1 Terminated") ;
 display_update() ;
 }
 TerminateTask() ;
}

TASK(Task2){
 static int j=0 ;

 if(j <= COUNT){
 display_goto_xy(0,2) ;
 display_string("task1 = ") ;
 display_goto_xy(8,2) ;
 display_int(j,5) ;
 display_update() ;
 j++ ;
 } else {
 display_goto_xy(0,5) ;
 display_string("TASK2 Terminated") ;
 display_update() ;
 }
 TerminateTask() ;
}

This routine is hooked on
built-in timer interrupt

routine.

This routine is hooked on
built-in timer interrupt

routine.

Necessary to increase
system timer count

Necessary to increase
system timer count

SPIED2013 : Summer Program for Innovative Engineering Design

Mechanical Systems Control Laboratory

How periodic tasks are implemented in nxtOSEK.

60

COUNTER SysTimerCnt
 {
 MINCYCLE = 1 ;
 MAXALLOWEDVALUE = 10000 ;
 TICKSPERBASE = 1 ; /* 1[tick] = 1[ms] */
 } ;
 ALARM periodic_alarm1
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task1 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ; /* in [ms] */
 APPMODE = appmode1 ;
 } ;
 } ;
 ALARM periodic_alarm2
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK {
 TASK = Task2 ;
 } ;
 AUTOSTART = TRUE {
 ALARMTIME = 1 ;
 CYCLETIME = 20 ;
 APPMODE = appmode1 ;
 } ;
 } ;
} ;

There are some important information for coding
realtime application in nxtOSEK.

1) Periods of periodic tasks are generated by the

internal timer of ARM7 cpu.

2) In order to code a realtime task, you have to
define COUNTER object in OIL.

3) You have also to define ALARM object in your
oil file. Your ALARM object can be more than
2 as this example shows.

4) The minimum CYCLETIME (Execution interval)
is 1[ms]. However, please keep it in mind that
most of the CPU time might be occupied by
1[ms] task, which can be a cause of trouble.

SPIED2013 : Summer Program for Innovative Engineering Design

This page is intentionally
left blank.

Mechanical Systems Control Laboratory 61

SPIED2013 : Summer Program for Innovative Engineering Design

Challenge 1 : Accelerating and Decelerating the motor

• Build a motor velocity control application which satisfies the
following technical specification.

• [Specification]
1. Connect a motor to NXT brick. Use port A unless port A is not functioning

properly .
• Increase or decrease the speed of motor rotation depending on the status of

push sensors.

• Use the API nxt_motor_set_speed().

2. Connect 2 touch sensors to PORT S1 and S2.
• In case your program detects that S1 is pushed, increase the speed of the motor

to some amount .

• In case your program detects that S2 is pushed, decrease the speed of the motor
to some amount.

• Use the API ecrobot_get_touch_sensor(). You should consult your API handout
for details of the function.

3. Display the current power setting to brick’s LCD.

Mechanical Systems Control Laboratory 62

SPIED2013 : Summer Program for Innovative Engineering Design

Give Thoughts on CPU time distribution

• As you understand, there are 3 distinct tasks to be executed.

• [Discussion]
– Which task should be executed periodically (not restricted to only 1 task) ?

– Which task should be given the shortest cycletime ? (In other words, which
task should be most frequently executed ?)

– Which task is the least important of all ? (It is adequate to execute this task
in back ground. No realtime execution is necessary.)

– [Advanced Question]
• What is the suitable cycletime for tasks which you think they should be executed

in real time.

Mechanical Systems Control Laboratory 63

Task 1

Reading the status of
two push sensors.

Task 2

Modifying the speed
of the motor.

Task 3

Display the current
motor speed.

SPIED2013 : Summer Program for Innovative Engineering Design

Start Coding!

• Start coding with API reference beside you.
– Just try to start coding.

– You have to make 3 files.

• The C source

• OIL file

• The Makefile.

– Don’t fear for making mistakes!

• Your LEGO brick will not be broken even if you made some serious mistake!

• Code it ! Try it ! And debug it!

– To get the status of push sensor
• API function : U8 ecrobot_get_touch_sensor(U8 port_id) will help.

Mechanical Systems Control Laboratory 64

SPIED2013 : Summer Program for Innovative Engineering Design

Challenge 2 ! Continuous velocity control

• In the previous challenge, we use two touch sensors in order to
take acceleration/deceleration action.

• However, there are several sensors included in your LEGO set.
– 2 touch sensors

– 1 sound sensor (returns a value reversely proportional to loudness of a
sound)

– 1 sonar sensor (returns a distance between the sensor surface and the
obstacle in [cm])

– 1 light sensor (returns a value proportional to reflection rate of a light)

• It returns a large value if the target is dark, and vice-versa.

• All these sensors are supported by ecrobot API. Try using one of
these (except touch sensor) to implement smooth velocity control.
– Discuss with your teammates which sensor to use and create an application.

Mechanical Systems Control Laboratory 65

SPIED2013 : Summer Program for Innovative Engineering Design

That’s all

• Thank you for your attendance to this class.

• I hope all teams will create amazing and
innovative systems based on your original idea
and LEGO programming technique.

Mechanical Systems Control Laboratory 66

SPIED2013 : Summer Program for Innovative Engineering Design

[Addendum] Set Point Tracking (servo) of motor angle

• Construct a servo control system of motor angle

• Program specification
– Control motor angle so that in a specified time.

– Reference angle can be given by push button manipulation.

• ECRobot APIs used in this example

– nxt_motor_set_speed （← This is the control input）

– nxt_motor_set_count / nxt_motor_get_count （feedback signal acquisition）

– ecrobot_get_touch_sensor （reference signal）

Mechanical Systems Control Laboratory 67

Controller
LEGO
motor

－ (reference)

Motor angle
(controlled variable)

SPIED2013 : Summer Program for Innovative Engineering Design

servo.c (C source for servo control) (1)

Mechanical Systems Control Laboratory 68

#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"
#include <math.h>

#define POSITIVE NXT_PORT_S1
#define NEGATIVE NXT_PORT_S2
#define Kg 0.8

DeclareCounter(SysTimerCnt) ;
DeclareTask(MotorTask) ;
DeclareTask(TouchSensorTask) ;

int ref_deg = 0 , motor_pow = 0, deg ;
F32 int_err = 0.0 ;

void ecrobot_device_initialize(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
 nxt_motor_set_count(NXT_PORT_A, 0) ; /* initialize */
}

void ecrobot_device_terminate(){
 nxt_motor_set_speed(NXT_PORT_A, 0, 0) ;
}

void user_1ms_isr_type2(void){
 SignalCounter(SysTimerCnt) ;
}

TASK(MotorTask){
 int_err += (ref_deg - deg) * 0.01 ;
 deg = nxt_motor_get_count(NXT_PORT_A) ;
 motor_pow = (int)(Kg * (ref_deg - deg) + 0.5 * int_err) ;
 nxt_motor_set_speed(NXT_PORT_A, motor_pow, 0)

 TerminateTask() ;
}

TASK(TouchSensorTask){
 int go_positive, go_negative ;

 go_positive = ecrobot_get_touch_sensor(POSITIVE) ;
 go_negative = ecrobot_get_touch_sensor(NEGATIVE) ;

 ref_deg += 60 * (go_positive - go_negative) ;
 TerminateTask() ;
}

TASK(DisplayTask){

 while(1){
 display_goto_xy(1,2) ;
 display_string("power = ") ;
 display_goto_xy(6,2) ;
 display_int(motor_pow, 5) ;
 display_goto_xy(1,3) ;
 display_string("deg = ") ;
 display_goto_xy(6,3) ;
 display_int(deg, 5) ;
 display_goto_xy(1,4) ;
 display_string("ref = ") ;
 display_goto_xy(6,4) ;
 display_int(ref_deg, 5) ;
 display_update() ;
 }

 TerminateTask() ;
}

SPIED2013 : Summer Program for Innovative Engineering Design

servo.c (C source for servo control) (2)

Mechanical Systems Control Laboratory 69

TASK(DisplayTask){

 while(1){
 display_goto_xy(1,2) ;
 display_string("power = ") ;
 display_goto_xy(6,2) ;
 display_int(motor_pow, 5) ;
 display_goto_xy(1,3) ;
 display_string("deg = ") ;
 display_goto_xy(6,3) ;
 display_int(deg, 5) ;
 display_goto_xy(1,4) ;
 display_string("ref = ") ;
 display_goto_xy(6,4) ;
 display_int(ref_deg, 5) ;
 display_update() ;
 }

 TerminateTask() ;
}

[Note]
If you are familiar with classical control theory, you
might understand that this program is an
implementation of PI-control about motor angle.

SPIED2013 : Summer Program for Innovative Engineering Design

servo.oil (1)

Mechanical Systems Control Laboratory 70

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256
{
 OS LEJOS_OSEK
 {
 /* omitted since it is the same as before */
 };

 /* Definition of application mode */
 APPMODE appmode1{};

 /* Definition of MotorTask */
 TASK MotorTask
 {
 AUTOSTART = FALSE ;
 PRIORITY = 2; /* lowest priority */
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

/* Definition of TouchSensorTask */
 TASK TouchSensorTask
 {
 AUTOSTART = FALSE ;
 PRIORITY = 3;
 ACTIVATION = 1;
 SCHEDULE = FULL;
 STACKSIZE = 512;
 };

 TASK DisplayTask
 {
 AUTOSTART = TRUE
 {
 APPMODE = appmode1 ;
 } ;
 PRIORITY = 1 ;
 ACTIVATION = 1 ;
 SCHEDULE = FULL ;
 STACKSIZE = 512 ;
 } ;

SPIED2013 : Summer Program for Innovative Engineering Design

servo.oil (1)

Mechanical Systems Control Laboratory 71

COUNTER SysTimerCnt
 {
 MINCYCLE = 1 ;
 MAXALLOWEDVALUE = 10000 ;
 TICKSPERBASE = 1 ; /* 1[tick] = 1[ms] */
 } ;

 ALARM periodic_alarm1
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK
 {
 TASK = TouchSensorTask ;
 } ;
 AUTOSTART = TRUE
 {
 ALARMTIME = 1 ;
 CYCLETIME = 100 ;
 APPMODE = appmode1 ;
 } ;
 } ;

 ALARM periodic_alarm2
 {
 COUNTER = SysTimerCnt ;
 ACTION = ACTIVATETASK
 {
 TASK = MotorTask ;
 } ;
 AUTOSTART = TRUE
 {
 ALARMTIME = 1 ;
 CYCLETIME = 15 ;
 APPMODE = appmode1 ;
 } ;
 } ;

 } ;

I believe you can write Makefile by yourself.

