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Abstract: A Deep Belief Net (DBN) with stacked Restricted Boltzmann Machines (RBMs) and a 

Multi-Layer Perceptron (MLP) was proposed for time series forecasting in our previous works. In this study, 

the fine-tuning method of DBN is modified by Adaptive moment estimation (Adam) instead of the 

conventional error Back-Propagation (BP). Experiment using a benchmark data CATS and chaotic time series 

showed the efficiencies of different learning methods. 
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1. Introduction 

The study of time series forecasting has a long history 

since 1940s. Classically, linear models such as 

Autoregressive (AR), Moving Average (MA) and 

autoregressive integrated moving average (ARIMA) 

(Box-Jenkins 1976), and Autoregressive Conditional 

Heteroskedasticity (ARCH) [1] of R. Engle, who is the 

winner of 2003 Nobel Memorial Prize in Economic 

Sciences, are well known. Meanwhile, after the error 

Back-Propagation (BP) [2] was invented for the 

optimization of a feed-forward Artificial Neural 

Network (ANN), Multi-Layered Perceptron (MLP), 

there have been more than 6,000 publications of time 

series forecasting using ANNs until 2007 [3]． 

Deep Learning (DL) methods, which improved 

the BP by pre-training between the adjacent layers of 

ANNs [4], triggered the 3rd boom of the Artificial 

Intelligence (AI) research since the middle of 2000s. 

In our previous study, DL was firstly applied to the 

field of time series forecasting [5]-[9]．In [6] and [7], 

Hinton & Salakhutdinov’s deep belief net (DBN), 

which is composed by Multiple Restricted Boltzmann 

machine (RBM) - a bi-directional recurrent neural 

network, was used to compare the accuracy of 

prediction of long-term forecasting a benchmark 

dataset and one-ahead forecasting of chaotic time 

series. The structure of the DBN, i.e., the number of 

RBMs and the number of units in each layer of RBMs 

was optimized by the Particle Swarm Optimization 

(PSO), and the modification of the parameters of the 

DBN such as the weights of connections of units, and 

the biases of each unit of RBM was given by the 

pre-training of RBMs with the gradient of network 

energy and the fine-tuning of whole DBN using the 

training samples and BP method, i.e., the gradient of 

Mean Squared Error (MSE) of the output of the DBN. 

Experiment results showed that the DBN was superior 

to the conventional MLP not only for the long-term 

forecasting but also one-ahead forecasting.  In [8] and 

[9], the DBN was improved by composing the 

multiple RBMs and one MLP, which output 

continuous values more reasonable for time series 

forecasting.  

The modification of parameters of ANNs is not 

limited to BP, but also approached by Evolutional 

Algorithms (EA), e.g., Genetic Algorithm (GA), 

Simulated Annealing (SA), PSO, Genetic 

Programming (GP), etc. Furthermore, Reinforcement 
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Learning (RL), an error-trials learning method 

different from supervised learning, is also widely 

utilized to tuning of the parameters of ANNs [10]-[17]. 

R. J. Williams firstly proposed a RL algorithm 

REINFORCE to adjust the connection weights of units 

in 1992 [10]. Kimura & Kobayashi proposed a RL 

algorithm Stochastic Gradient Ascent (SGA) for the 

learning of continuous actions [11]. Sutton et al.’s RL 

method in [12] is well-known and applied to function 

approximation and system control. V. Mnih et al. 

successes on a development of game software using a 

DL model Convolutional Neural Network (CNN) and 

BP pre-training as well as RL for fine-tuning [13]. This 

success was developed to AlphaGo which is very 

famous for winning professional human players of GO 

[16]. In our previous works, SGA was adopted to a 

feed-forward ANN Radial Basis Function Network 

(RBFN) for time series forecasting and the proposed 

model showed its priority comparing to the case of BP 

learning and other forecasting methods [14]. In [15] 

and [17], we successfully used SGA as the fine-tuning 

method of DBN instead of conventional BP, especially 

for the case of real data forecasting. 

In this paper, we adopt Adaptive moment 

estimation (Adam) [18] to the fine-tuning of DBN 

[7]-[9] for time series for casting. Adam is an 

improved BP learning method. It utilizes not only the 

gradient of Mean Squared Error (MSE) between the 

output of the model and teacher signals, but also the 1st 

moment (the change of parameters in one step before 

of modification) and the 2nd moment (the change of the 

modification between the two steps before and one 

step before). The prediction performance of the DBN 

with Adam is confirmed by the experiment using 

benchmark dataset CATS [19] [20] which was utilized 

in the time series forecasting competition with ANN 

methods. 

 

2. DBN and its Fine-Tuning Methods 

A Deep Belief Net (DBN) composed by multiple 

Restricted Boltzmann Machines (RBMs) was used for 

dimensionality reduction and image processing in the 

original study [4]. To apply DBN to time series 

forecasting, which needs continuous values of output, 

we combined RBMs with MLP [8] [9] [15] [17]. In 

this section, the structures of DBN and RBM, and the 

pre-training learning rule are introduced at first, then, 

fine-tuning methods including BP and Adam are 

described. The optimization of structure of DBN 

utilizes Random Search (RS) proposed by Bergstra & 

Bengio in 2012 [21] and Particle Swarm Optimization 

(PSO). The details of these optimization methods can 

be found in [22]. 

 

2.1 The Structure of DBN for Time Series 

Forecasting 

DBN for time series forecasting is composed by 

stacked RBMs and a MLP as shown in Fig.1. 

 

 

Fig.1 A structure of DBN for the time series. 

 

Restricted Boltzmann Machine (RBM) [4] is a kind 

of Recurrent Neural Network (RNN) which has two 

layers: visual layer and hidden layer as shown in the left 

of Fig.1. ith unit vi in visual layer connects to jth unit hj 

with a symmetric weight wij. Units in RBM have binary 

values 0 or 1, which are given by a sigmoid probability 

distribution including parameters of biases bi，bj. 
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The network energy of RBM is as Eq. (5), and the 

pre-training learning rules Eqs. (6)-(8) are given by the 

gradient of the network energy. 
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where 10   is a learning rate, 

',data modelij i j ij i jp v h p v h    are the distributions 

of Gibbs sampling (sampling time k=0), 

 ji hv
~

,~ are the distributions of re-sampling 

(k=1) in Contrastive Divergence (CD) algorithm. 

 

2.2 The Structure of MLP and the Fine-Tuning 

Methods 

The structure of Multi-Layered Perceptron (MLP) is 

shown in the right of Fig.1. In MLP, units connect to 

all units in the next layer but no connections between 

units in the same layer [2]. Data in multiple 

dimensions are input to the ith unit ix ( 1,2,...i n ) and 

it is input to the jth unit jz  in the hidden layer with a 

connection weight wji=wij. The output of MLP is given 

as follows. 
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where n is the dimensionality of input, K is the 

number of units in hidden layer, 1 11.0, 1.0n Kx z   are 

biases of hidden units and output units, respectively. 

( 1) 1,j n Kv w  are the connection weights between units. 

Parameters in Eqs. (9) and (10) are adjusted by 

using the mean squared error (MSE) between the 

output of MLP and teacher data. Using gradient 

method, BP learning rules are derived as follows. 

jj zyyyyw )1()~(                   (11) 
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where 10   is a learning rate, y~ is the value 

of training sample (teacher signal). 

In the case of Adam [18], 

parameters ( , )θ ji jv w of a neural network are 

modified by follows. 
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where ， 1 20 , , 1t t     are hyper-parameters, 

originally 8
1 20.9, 0.999, 10       and 1( )t t l  

is a stochastic objective function with parameter , 

usually MSE or cross entropy function, 0 0 0m v   

[18]. 

 

 

Fig.2 Time series data of CATS [19] [20] 
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3. Experiments and Results 

3.1 Time Series Data 

3.1.1 Benchmark Dataset CATS 

To confirm the performance of Adam for DBN, a 

benchmark dataset CATS [19] [20] was utilized in the 

time series forecasting experiments. CATS is a kind of 

artificial time series data which includes 5 block data 

(as shown in Fig.2). There are 1,000 data (integer 

value) in each block, and the last 20 values, e.g., from 

981 to 1,000, are hidden for the evaluation of 

long-term forecasting methods. The evaluation 

measurements are given by two mean squared errors 

E1 and E1 as follows. 
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3.1.2 Lorenz Chaos 

Lorenz chaos [24] is very famous for its “butterfly 

attractor” as shown in Fig.3. The attractor is given by a 

3-dimension differential equation as follows. 

dx
x y

dt
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                    (19) 

 

Fig.3 Lorenz chaos given by Eq. (19) where 

10.0, 28.0, 8 / 3, 0.01b r t     .  

To examine the effectiveness of the DBN with 

Adam for nonlinear phenomena, the time series data of 

x-dimension of Lorenz chaos were used in the 

one-ahead forecasting experiment. 1,000 data of 

x-dimension of Lorenz chaos are normalized to (0.0, 

1.0) and plotted in Fig.4. Data 1-600 were used as 

training samples, 601-800 were validation data, and 

801-1000 as test data. 

 

Fig.4 Chaotic time series used in the experiment. 

 

3.2 Parameters Used in Experiments 

For the optimal structure of DBM are decided by PSO or 

RS as described in Section 2, the exploration ranges for 

the hyper-parameters such as the number of RBMs in 

DBN, the number of units in each RBM’s hidden layers, 

learning rate of RBMs, and learning rate of Adam or BP 

were set as shown in Table 1.  

The limitations of exploration times were set to be 

15 for PSO and 500 for RS empirically. The limitation 

of training time of RBM was the maximum 2,000 times 

or the network energy converged (the change of average 

value of 50 episodes less than 0.05). For MLP, it was 

10,000 times limitation or the error between forecasted 

value and validation data increased. 
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Table 1. Exploration rage of PSO and RS for optimization of 

DBN 

Dimension Exploration Range 

of PSO and RS 

The number of RBMs 0-3 

The number of units in RBM’s 

hidden layers 

2-20 

Learning rate of RBMs 10-1-10-5 

Learning rate of MLP 10-1-10-5 

 

3.3 Experiment Results and Discussions 

3.3.1 Results of CATS dataset 

The parameter exploration results for block No. 1 of 

CATS are shown in Table 2. By PSO exploration, the 

numbers of RBMs in DBN were 2, both cases of Adam 

and BP learning methods. Meanwhile, the learning rates 

and the numbers of neurons in each layer were different. 

The long-term forecasting errors (E1) of different 

methods are shown in Table 3. DBM with Adam 

fine-tuning showed its priority not only in the case of 

PSO but also RS. The DBN with Adam and RS model 

had the highest prediction accuracy comparing to the 

conventional methods listed in the Table 3. 

 

Table 2 Parameters of DBN used for the CATS data(A case 

of Block 1) 

 

 

 

 

 

Table 3 The comparison of long-term prediction error (E1) 

between different methods using CATS dataset [19] [20] 

Method E1 

DBN (Adam + RS) (proposed) 134.04 

DBN (Adam + PSO) (proposed) 148.24 

DBN (BP + RS) [7] 155.53 

DBN (BP + PSO) [7] 155.65 

DBN(SGA) [15] [17] 170 

DBN(BP)+ARIMA [8] [9] 244 

DBN (BP + PSO) [5] [6] 257 

Kalman Smoother(The best of IJCNN '04) [20] 408 

DBN (2 RBMs) [4] 1215 

MLP [2] 1245 

A hierarchical Bayesian Learning Scheme for 

Autoregressive Neural Networks (The worst of 

IJCNN '04) [20] 

1247 

ARIMA [23] 1715 

ARIMA+MLP(BP) [8] [9] 2153 

ARIMA+DBN (BP) [8] [9] 2266 

 

 

Fig.5 The change of the learning error (MSE) during fine 

tuning by BP method (CATS data [1-980])  

 

Fig.6 The change of the learning error (MSE) during fine 

tuning by Adam method (CATS data [1-980])  

 

  

 

 Adam + 

PSO 

BP + 

PSO 

Adam + 

RS 

BP + 

RS 

The number 

of RBMs 

2 2 2 1 

Learning 

rate of RBM  

0.0001, 

0.0968 

0.01392, 

0.02266 

0.0609, 

0.0227 

0.062 

Structure of 

DBN (the 

number of 

neurons in 

each layer) 

17-19-2

0-3-1 

16-17- 

17-20-1 

18-19- 

12-12-1 

17-5- 

9-1 

Learning 

rate of MLP 

0.001 0.02170 0.001 0.009

51 

Learning 

Forecasting 

Learning 

Forecasting 
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(a) The case of PSO for BP 

 

 

(b) The case of RS for BP 

 

 

(c) The case of PSO for Adam 

 

(d) The case of RS for Adam 

Fig.7 The change of the number of hidden neurons of RBMs 

by PSO and RS explorations (CATS data [1-980]) 

 

(a) The case of PSO for BP 

 

(b) The case of RS for BP 

 

(c) The case of PSO for Adam 

 

 

(d) The case of RS for Adam 

Fig.8 The change of the learning rates by PSO and RS 

explorations (CATS data [1-980]) 

 



International Journal of Engineering Innovation and Management             Vol. 10, No.2, 2020 
 

 20 

To confirm the learning performance of BP and 

Adam, the changes of learning error (MSE) and 

forecasting error of validation data (MSE) are shown 

in Fig.5 and Fig.6. The learning errors (one-ahead 

forecasting) reduced according to the increase of 

iterations of the BP and Adam learning algorithms and 

for unknown validation data, forecasting errors 

(one-ahead forecasting) showed unstable during 

iteration of learning. The training errors of BP and 

Adam learning converged to 0.0115 and 0.0114, 

meanwhile, the forecasting error of BP learning was 

converged to 0.0156 (Fig.5), lower than Adam’s 

0.0179 (Fig.6). 

To confirm the performance of PSO and RS 

optimization, the change of the number of hidden units 

is shown in Fig.7. The optimal number of hidden units 

of different methods is shown in Table 2. 

     The change of the learning rates of RBMs and 

MLP are shown in Fig.8 and the optimal learning rates 

are shown in Table 2. Note that learning rates in Adam 

algorithm were fixed to 0.001 as same as in [18].  

     Details of learning error and forecasting error of 

5 blocks of CATS data by different models are shown 

in Table 4 (one-ahead forecasting results). The best 

results were presented in bold font. The optimal 

parameters exploited by PSO and RS of block No. 2 to 

block No.5 are omitted here. 

The long-term forecasting errors are shown in 

Table 4. RS exploited DBN with Adam showed its 

priority not only in the sense of E1 but also E2. 

 

 

 

 

 

 

 

3.3.2 Results of Lorenz chaos 

The hyper-parameters exploited by RS and PSO are 

shown in Table 6 and Table 7. It can be found that 

structures of DBNs are different according to the 

different exploitation and different learning methods. 

Training errors and forecasting errors (one-ahead 

forecasting) of different methods for the chaotic time 

series are shown in Table 8. DBN with PSO and Adam 

showed its superiority among 4 DBN models. Note 

that chaotic time series are sensitive to its initial value 

and parameters in model, it is impossible to perform 

the long-term forecasting. 

Table 4 Learning errors (MSEs) (upper) and forecasting 

errors (MSEs) (under) of different blocks of CATS data by 4 

kinds of models: PSO with BP, PSO with Adam, RS with BP, 

and RS with Adam. 

Data BP 

PSO/RS  

Adam 

PSO/RS 

cats1000 1.37/1.15 

1.66/1.56 

1.34/1.14 

1.84/1.78 

cats2000 1.64/1.18 

1.79/1.78 

1.64/1.20 

1.64/1.79 

cats3000 1.57/0.90 

2.17/1.17 

1.56/1.01 

2.05/1.61 

cats4000 1.30/1.04 

1.45/2.05 

1.29/0.86 

1.55/1.27 

cats5000 1.66/1.02 

4.11/4.82 

1.65/1.21 

4.21/4.57 

                               Unit: x10-2 

 

Table 5 Long-term forecasting errors of CATS dataset by 4 

kinds of models: PSO with BP, PSO with Adam, RS with 

BP, and RS with Adam. 

Error BP 

PSO/RS 

Adam 

PSO/RS 

E1 155.65/155.53 148.24/134.04 

E2 128.13/132.65 122.81/112.22 
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Table 6 Hyper-parameters decided by RS for Lorenz chaos. 

Method Number 

of 

RBMs 

Number of 

units in 

hidden 

layers 

Learning rate 

BP 1 20－19－10

－1 

RBM: 0.065878 

BP: 0.081975 

Adam 3 3－9－13－

12－12－2

－1 

RBM1: 0.088181 

RBM2: 0.024990 

RBM3: 0.038914 

 

Table 7 Hyper-parameters decided by PSO for Lorenz chaos. 

Method Number 

of 

RBMs 

Number of 

units in 

hidden 

layers 

Learning rate 

BP 2 6－6－10－

10－1 

RBM1: 0.094890 

RBM2: 0.041967 

BP: 0.030188 

Adam 2 20-20-7-2-1 RBM1: 0.016258 

RBM2: 0.000010 

 

Table 8 Training errors (MSEs) (upper) and one-ahead 

forecasting errors (MSEs) (under) by different methods for 

Lorenz chaos. 

 MSE (one-ahead forecasting) 

BP Adam 

RS 3.32 

1.70 

5.19 

3.03 

PSO 5.95 

2.86 

3.23 

1.68 

                              Unit: x10-5 

 

4. Conclusion 

Adam, a deep learning optimization method which is 

widely used for Convolutional Neural Networks 

(CNNs), was adopted to the fine-tuning of parameters 

of Deep Belief Net (DBN) for time series forecasting 

in this paper. Comparing to the conventional 

fine-tuning methods such as error Back-Propagation 

(BP) and the Reinforcement Learning (RL), the 

proposed DBN with Adam showed its superiority in 

both cases of benchmark dataset CATS and the chaotic 

time series. The performance of the proposed method 

in the case of real data forecasting needs to be 

confirmed in the future. Additionally, there are some 

advanced Adam such as AdaSecant，AMSGrad，

AdaBound, and so on are able to adopted to the 

fine-tuning process of DBN. 
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