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Abstract: Common clinical practice for tumor position management in respiratory gated radiotherapy is the use of fiducial 

markers embedded close to the tumor. However, as marker implantation is invasive to patients, tumor position management 

based on X-ray fluoroscopic images using deep neural network which is referred to as image-guided radiotherapy is 

intensively studied recently. This paper accordingly proposes the numerical generation of digitally reconstructed 

radiographs (DRRs) from the CT data of a patient to be used in training image-based localization system of lung tumor. 

We propose unified calculation algorithm that can cope with the cases when a nonzero couch angle is requested in the 

prescribed treatment plan. DRRs calculated by the proposed algorithm are verified by comparing them with physically 

obtained DRR of a patient taken during treatment, and the positional error metrics of the centroid of tumor show acceptable 

accuracy of numerically generated DRRs. 
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1. Introduction 

Lung cancer has gradually become the leading cause of 

cancer deaths worldwide. There were above 1.6 million 

lung cancer deaths that amounted to about 19% of all 

types of cancer deaths, and about 1.8 million new lung 

cancer cases were confirmed in 2012 [1]. Radiotherapy 

is considered as one of the three major medical 

treatments of cancers. It aims to irradiate a tumor as 

precisely as possible to kill cancer cells while avoiding 

irradiation of healthy tissues. As lung tumors are known 

to exhibit respiratory-induced changes in their position 

and orientation inside the body, it is necessary to 

introduce a motion management system during treatment 

so as not to irradiate healthy tissues around the tumor. 

Common clinical practice for the tracking of lung 

tumor motion in radiation therapy is to implant fiducial 

markers around a tumor to identify its position and 

orientation changes using X-ray fluoroscopic images [2]. 

Position management of tumors using fiducial markers is 

known to be robust not only to translation/rotational 

motions but also to deformation of the lung due to 

inhalation and exhalation [3]. However, implantation of 

fiducial markers is known to be invasive to patients and 

can be a cause of pneumothorax [4]. It might be more 

preferable if the location and the target volume of the 

tumor is identified directly by X-ray fluoroscopic image. 

The objective of the present study is closely related to the 

marker-less localization and dose delivery to tumors in 

radiation therapy that is referred to as image-guided 

radiotherapy (IGRT).  

We need to construct an X-ray image processing 

system in the clinical implementation of IGRT. The 

system should be capable of recognizing tumor region 

inside the image in real-time. The use of deep neural 

network for marker-less pancreatic tumor target 

localization has been reported recently [5] in which a 

trained deep neural network was successfully used as the 

Received: 2021/01/25, Accepted: 2021/02/22 

*Corresponding author: Fumitake Fujii 

E-mail address:ffujii@yamaguchi-u.ac.jp 

 



Xiaoke Ran, Fumitake Fujii, Takehiro Shiinoki 

Generation of Digitally Reconstructed Radiographs in Therapeutic Geometry for Maker-less Localization of Lung Tumor in X-ray Image  

 2 

fluoroscopic image processor. The performance of a 

trained deep neural network that functions as the image 

processing block will be severely affected by the number 

of X-ray images of lung tumors available for training.  

The deep neural network X-ray image processor 

should be trained with images of a specific patient to 

form a highly accurate personalized tumor identifier for 

treatment dose delivery. However, taking many X-ray kV 

images for this purpose cannot be put into practice as the 

cumulative amount of dose delivered to the patient might 

exceed the safety limit of the diagnostic use of X-ray. 

Adding lung tumor labels to X-ray images can also be a 

hard task when there are a large number of images to be 

processed, as the tumor labels are manually delineated by 

an experienced doctor that takes a long time to be 

completed. 

The present paper accordingly proposes the 

automatic generation system of digitally reconstructed 

radiographs (DRRs) from a single 3D computer 

tomographic (CT) data of a target patient. The output of 

the system will be a DRR with automatically labeled 

lung tumor information. We propose a DRR generation 

system that can produce DRRs with non-zero couch 

angles at any known imaging direction. This function 

contributes to the increase of DRRs that can be used for 

training a deep neural network as a tumor locator of a 

specific target patient in their X-ray fluoroscopic images. 

 

2. Ray-casting Algorithm for DRR 

Generation 

As generation of DRR yields high computational cost if 

the resolution of original CT data is high. There is 

accordingly a trade-off between the computational time 

and image. Westover [6] proposed a splatting algorithm 

for fast DRR generation in which each voxel in the CT 

volume is projected to the detection plane separately. 

Although his algorithm reduces the complexity of the 

problem, the aliasing effect will cause image distortion.  

 

Fig.1 Calculation of DRR from 3D CT data 

 

The light field algorithm [7] and the attenuation 

field algorithm [8] were proposed for fast DRR 

generation with acceptable quality whereas the range of 

projection angles that can be set for DRR generation is 

limited. If one wants to generate DRR for different 

projection setup, preprocessing step should be performed 

from scratch. 

This study uses the classic ray projection method 

which is referred to as ray-casting. Fig.1 schematically 

explains the ray-casting algorithm. The intensity value of 

each pixel in the resulting DRR is determined by 

sampling of a CT volume and adding it along a line that 

connects the virtual ray source with a pixel in the image 

intensifier plane. While an X-ray was going through 

bones, organs and other human tissues, it was partly 

absorbed and attenuated before arriving at a point on the 

image plane that makes the difference of intensity value 

of a pixel in DRR. 

We consider multiple X-ray lines that result in a 

DRR on an image plain in this algorithm. The number of 

rays assumed from the X-ray source point is the same as 

the number of pixels included in the resulting DRR. We 

note that the ray source and imaging plane here are 

virtual. Mutual positional relationship between the ray 

sources and an imaging plane is determined according to 

the geometry of the simulated imaging system. We 

performed equidistant sampling on each ray, and 

calculated the attenuation coefficient of a voxel in a CT 
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volume by interpolation of its surrounding voxels. 

The pixel intensity value of a DRR was strongly 

related to the associated CT voxel data. The attenuation 

of an X-ray intensity when it passes through an object is 

calculated according to the Beer-Lambert law 

𝐼1 = 𝐼0 ∙ 𝑒
−∫𝜇𝑥𝑑𝑥 (1) 

where 𝐼0  is the initial intensity of the ray, 𝜇𝑥  is the 

linear attenuation coefficient of a point 𝑥 on the ray line. 

It was known that the attenuation coefficient of an X-ray 

at a specific point 𝑥 on the tissue can be calculated by 

the CT value of the voxel associated with a point 𝑥 

represented in Hounsfield unit: 

𝜇𝑥 =
𝐶𝑇𝑥(𝜇𝑤𝑎𝑡𝑒𝑟 − 𝜇𝑎𝑖𝑟)

1000
+ 𝜇𝑤𝑎𝑡𝑒𝑟  (2) 

where 𝐶𝑇𝑥 is the CT value of a voxel 𝑥, 𝜇𝑤𝑎𝑡𝑒𝑟  is the 

attenuation coefficient of X-ray in water, 𝜇𝑎𝑖𝑟   is the 

attenuation coefficient of X-ray in the air. 

 

 

Fig.2 (a) medical linear accelerator (TrueBeam, Varian 

Medical Systems, USA) and  

(b) real-time tumor tracking system installed in Yamaguchi 

University Hospital (SyncTraX, Shimadzu Co., Japan). 

 

 

Fig.3 Couch Rotation on XZ plane. 

3. Coordinate Transformation 

DRR generation is equivalent to the process of X-ray 

penetration through CT voxels in a three-dimensional 

space. When a DRR is generated from an 3D CT data, 

the result of penetration can be calculated numerically. 

We use the geometric data of a real imaging system to set 

coordinate systems. When a DRR from different 

projection directions and angles was necessary, 

appropriate coordinate system transformations should be 

performed to calculate the change of direction. 

Respiratory gated radiotherapy for lung tumor 

patients is performed in Yamaguchi University Hospital 

using a medical linear accelerator combined with a real-

time tumor tracking system as depicted in Fig.2. The 

real-time tumor tracking system tracks the motion of a 

tumor based on stereo template matching technique on a 

stereo pair of images of a fiducial marker in the X-ray 

fluoroscopic image captured by the system, with the 

spatial geometry illustrated in Fig.2(b). 

As the system takes stereo X-ray images at a 

frequency of 30 Hz for tumor motion tracking, a number 

of stereo X-ray image pairs can be obtained during 

treatment simulation and dose delivery. We would like to 

develop a deep neural network based fluoroscopic image 

processor that identifies the tumor region inside a 

captured X-ray image using the stereo X-ray images 

obtained with the system. To that end, we would like to 

generate DRRs calculated using the geometry of our 

clinical treatment system in Fig. 2 and the prescribed 

couch angle, using a CT data of the patient. 

When an X-ray is emitted by a source to a human 

body, it passes through bones, organs including a lung 

and other tissues and is attenuated before arriving at the 

imaging plane. The intensity of an X-ray when arriving 

at the image intensifier of the imaging system depends 

on directional angle of an X-ray beam to the human body. 

If we artificially generate DRRs from the 3D CT data of 

to be used as training data in the deep neural network, we 

have to take the spatial location of the ray source and the 

corresponding image intensifiers shown in Fig.2(b) into 

account to determine the directional angles of an X-ray 
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beam going through a CT volume, and the corresponding 

X-ray intensity on the image intensifier. 

3.1 Global Coordinate System 

The global coordinate system of a treatment room is a 

coordinate system of a medical linear accelerator. The 

origin of the global coordinate system is referred to as 

the isocenter. The X-ray optical axis is assumed to pass 

through the iso-center of the treatment system and is 

perpendicular to the imaging plane, as depicted in Fig. 1. 

The x, y and z axes are identical to the corresponding 

axial directions of the CT volume, that is, LR, SI and AP 

directions, respectively. 

3.2 Coordinate System Conversion 

We treat the number of pixels of an imaging plane as a 

variable when we establish a coordinate system of the 

imaging plane, as there might be cases when a different 

resolution of a DRR is requested. X-rays starting from 

the virtual ray source will reach the pixels on the imaging 

plane after they suffer from attenuation. A transformation 

between the global and the imaging-plane coordinate 

systems is introduced here to calculate coordinate values 

of pixels in the imaging plane in the global coordinate 

system, and the X-ray attenuation path. A rotation matrix 

R is determined according to coincide with a real 

imaging system geometry. [𝑥, 𝑦, 𝑧]𝑝𝑙𝑎𝑛𝑒
𝑇   represents a 

coordinate value of a pixel of an imaging plane that is 

expressed in the imaging plane coordinate system 

depicted in Fig.1, and let [𝑥, 𝑦, 𝑧]𝑔𝑙𝑜𝑏𝑎𝑙
𝑇   be the 

corresponding coordinate value of the pixel expressed in 

the global coordinate system. Then 

[
𝑥
𝑦
𝑧
]

𝑔𝑙𝑜𝑏𝑎𝑙

= 𝜆([
∆𝑥
∆𝑦
∆𝑧

] + 𝑅 [
𝑥
𝑦
𝑧
]

𝑝𝑙𝑎𝑛𝑒

) (3) 

applies, where [∆𝑥, ∆𝑦, ∆𝑧]𝑇  is a translation vector 

which compensates for the displacement of the origins of 

the two coordinate systems, and 𝜆 is the scaling factor, 

𝜆 = 1 in the subsequent calculations.  

Let 𝜃 , 𝜙  and 𝜓  denote the rotation angles 

around 𝑥 , 𝑦  and 𝑧  axes, respectively. Then the 

rotation matrix 𝑅 is defined by: 

𝑅 = 𝑅𝜃𝑅𝜙𝑅𝜓 (4) 

where 𝑅𝜃, 𝑅𝜙, 𝑅𝜓are given by 

𝑅𝜃 = [
1 0 0
0 cos 𝜃 −sin 𝜃
0 sin 𝜃 cos 𝜃

] 
(5) 

𝑅𝜙 = [
cos𝜙 0 sin𝜙
0 1 0

−sin 𝜙 0 cos𝜙
] 

(6) 

𝑅𝜓 = [
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

] (7) 

We note that 𝜃 , 𝜙  and 𝜓  are determined from the 

geometric relationship between the real-time tumor 

tracking system and the global coordinate system. 

3.3 Calculation with non-zero couch angle 

The medical doctor sometimes prescribes a treatment 

plan with non-zero couch angle to maximally avoid 

irradiation of healthy tissues. One straightforward 

approach to generate a DRR from the CT data of the 

patient with non-zero couch angle requires a rotation of 

an entire CT volume to have a new coordinate value of a 

voxel in the global coordinate system before the ray-

casting calculations were performed. 

However, rotation of an entire CT volume would 

result in the significant increase of computational load, 

and the identification of CT voxel in which a ray line 

passes through becomes even more complicated. We 

accordingly propose to calculate a DRR corresponding 

to non-zero couch rotation angle by rotating the imaging 

system comprising the X-ray source and an imaging 

plane by the same amount of angle but in the reverse 

direction, as illustrated in Fig.3. When couch angle 

changes, only the ray source and an imaging plane should 

be rotated by the same angle but in the opposite direction. 

It reduces the amount of redundant calculations and the 

difficulty of voxel indexing in the ray-casting process. 
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4. Labeling lung tumor region in DRR 

The medical doctor manually delineates the tumor region 

on the CT slices to determine the position and shape of 

the tumor. As we can generate DRRs from the CT data 

even when couch angle is non-zero, the region of the 

tumor in the CT data should be marked and the 

information should be transmitted to the generated DRR 

for future training of deep neural network. However, as 

delineation of a tumor is performed on 3D CT slices, the 

outline of delineated tumor volume might not be 

continuous in the three-dimensional space. This fact 

sometimes makes the identification of the tumor on the 

generated DRR very difficult or even impossible. 

We accordingly propose a digital reconstruction 

method of a projected tumor in this paper. We first 

binarize every voxel included in a CT volume so that a 

voxel is made white if it constitutes the surface of a tumor, 

or otherwise is made black. Then, we perform maximum 

intensity projection on the binary CT volume with the 

same geometrical setup as the DRR projection. This 

procedure will produce a binary lung tumor image. 

Because of the discontinuity of the tumor contour in the 

3D space, the binarized white voxels would result in 

jagged edges in the computed DRR. After smoothing the 

image by Gaussian filtering and using the binary image 

contour extraction method shown in [9], we can 

determine the edge of the region that correspond to white 

voxels in the CT data.  

 

5. Results 

We used a CT scan data of a lung tumor patient to 

validate the proposed algorithms for generation of DRR. 

It includes 512×512×115 voxels and a single voxel 

whose size is  0:977×0:977×2 mm. The patient was 

assumed to be aligned on a couch with Head First-Supine. 

The relation between the CT coordinate system and the 

body-assigned coordinate system are shown in Fig.4. 

The X, Y and Z axes correspond to RL (Right-to-Left), 

SI (Superior-to-Interior) and AP(Anterior-to-Posterior) 

directions, respectively.  

We used the geometry labeled position 1 and 3 in 

Fig. 2(b) of the tumor tracking system for numerical 

generation of DRR. It includes four X-ray projection 

directions (position-1A, 1B, 3A, 3B). We assume three 

couch angles (0, 10 and -10 deg.) for the calculation and 

the DDR resolution is set to be 1024×1024 pixels. The 

result of our calculation is shown in Fig.5. Since the 

optical axis passes through the isocenter point and is 

perpendicular to the virtual imaging plane, the tumor 

target area is always located at the center of the obtained 

DRR as the centroid of a tumor volume in a CT data is 

located at the center of the global coordinate system. The 

DRRs generated in this study show good agreement to 

the X-ray images physically captured by the tumor 

tracking system. 

In order to match the size of the fluoroscopic image 

captured during treatment, we next attempted to generate 

DRRs with 1000×1000 pixels that had tumor contours 

projected from a delineated CT data using the method 

presented in this paper. The results were shown in Fig. 6. 

Binary images show the outline and shape of the tumor 

on the generated DRR image with 1000×1000 pixels. 

Due to noise and jagged edges in the projection, the 

contours in the generated DRR seem to have slight 

deviation. To evaluate the projection quality of the tumor 

target area, the quantity 

𝐷 = √(𝑥2 − 𝑥1)
2 + (𝑦2 − 𝑦1)

2 (8) 

is used to calculate the distance between centroid of the 

lung tumor label and the isocenter point as the error of 

identified centroid, where (𝑥2, 𝑥1) is the centroid of a 

lung tumor and (𝑦2, 𝑦1) is the isocenter point of a DRR. 

The errors under four projection geometries and three 

couch angles were summarized in Table 1. 

It was found from the table that errors 

corresponding to directions 1A and 3B was small, and 

the average positional error in position 1A and 3B were 
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less than 0.15mm and 0.87mm, respectively. However, 

we had a larger error in the position 1B and 3A. Their 

average errors were 3.50mm and 3.40mm, respectively. 

The degradation was caused by the three-dimensional 

nature of tumor volume in the CT. The outline of tumor 

volume can be discontinuous in the projection direction, 

a lung tumor outlines on each CT slice might partially 

overlap while the other parts do not. When we projected 

all the outline voxels on the label , some voxels that do 

not belong to the target area are included, resulting in a 

deviation in the calculated centroid of a tumor. 

 

 

Fig.4 Result of the generated DRR with 3 different couch 

angles and 4 different geometries. 

 

Fig.5 Results of tumor contour projection. 

 

Table 1 Gravity Center Position Error Calculation 

Gravity Center Position 

Errors [mm] 

Couch Angle 

-10 deg 0 deg 10 deg 

Position 1A 0.141 0.141 0.141 

Position 1B 3.765 3.178 3.570 

Position 3A 3.912 3.513 2.789 

Position 3B 0.860 1.581 0.141 

 

6. Conclusion 

This paper proposes a method to generate X-ray 

digital reconstructed radiographs that can generate a 

DRR from any requested direction of projection and non-

zero couch angles. We also presented a method to 

generate a tumor contour in the DRR that was formed by 

the projection of the delineated tumor in the 3D CT slices. 

Experimental generation of DRR using a CT data of lung 

tumor patient reveals that the proposed method 

successfully generates a clear and complete projection 

contour close to the actual tumor contour. The errors 

caused by the projection were acceptable in some 

directions. To improve the accuracy of the method in all 

directions and angles and the efficiency of DRR 

generation, we are trying to improve the method and use 

GPU to accelerate calculation. This method will also be 

applied to the next phase of lung tumor detection study. 
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