
International Journal of Engineering Innovation and Management                   Vol.12, No.2, 2022 
 

 
7 

 

DYG-SLAM: A Robust Visual SLAM in Dynamic Scenes using YOLOv3-tiny and 

Geometry Constraints 

 

Zhenwei Cui, Tianhong Pan*, Qionghua Wang 

School of Electrical Engineering and Automation, Anhui University, Hefei, Anhui 230601, China. 

 

Abstract: Simultaneous Localization and Mapping (SLAM) has been widely applied in the intelligent robot. 

However, classical visual SLAM (VSLAM) systems commonly work well in static environments, and whose 

performance may deteriorate in dynamic environments. To solve this problem, a dynamic object removal 

method combining YOLOv3-tiny and geometry constraints is proposed in this study, which can accurately 

locate dynamic objects and retain as many static feature points in the dynamic regions as possible. First, 

dynamic and static feature points coarse division strategy is designed, which uses YOLOv3-tiny to divide the 

image frames into static and dynamic regions, and then classify feature points into corresponding regions. 

Moreover, the modified geometry constraints are proposed to further process the feature points in dynamic 

regions. Combining epipolar constraints and Kalman filter together, the presented method can accurately 

distinguish dynamic and static feature points, and track the dynamic feature points in the dynamic regions. 

The presented method is integrated into the front-end of ORB-SLAM2 system, which is a pre-processing 

procedure to reduce the impact of dynamic objects on the system. Experimental results on the TUM RGB-D 

dataset and Bonn RGB-D dataset demonstrate that the proposed method is able to significantly improve the 

performance of the SLAM system in a highly dynamic environment and achieve real-time performance. 
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1. Introduction  

Simultaneous Localization and Mapping (SLAM) is a 

core technology for the intelligent robot, which can 

simultaneously estimate its position and build an 

environmental map in an unknown environment. Visual 

SLAM(VSLAM) which uses a camera as the perception 

sensor, has become an important research topic in 

recent years due to its low cost, high accuracy, and rich 

information. In the past few decades, many excellent 

VSLAMs have been emerged, such as 

ORB-SALM2[1] , RGBD-SLAM[2] , LSD-SLAM[3] . 

However, classical VSLAM systems commonly 

work well in static environments, whose performance 

will deteriorate in the environment containing dynamic 

objects (such as people and cars). The key procedure of 

VSLAM in dynamic regions is to accurately locate the 

position of dynamic objects and remove them. At 

present, many VSLAM systems dealing with dynamic 

scenes use object detection networks [4]  to locate the 

position of dynamic objects and eliminate them. 

However, many static feature points will be eliminated 

by mistake when the dynamic regions obtained by the 

object detection network are directly eliminated. As a 

result, the system’s accuracy will be reduced, or even 

the system fails to track. 

Therefore, a new VSLAM system named 

DYG-SLAM is proposed in this work for dynamic 

scenes based on ORB-SLAM2. The proposed method 
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combines the YOLOv3-tiny[5]  object detection 

network and a modified geometry constraints to 

eliminate dynamic objects. YOLOv3-tiny is used to 

determine the position of dynamic objects in the image, 

and divide the image into dynamic and static regions. 

The geometry constraints combine GC-RANSAC 

(Graph-Cut Random Sample Consensus)[7]  algorithm 

and Kalman filter[8]  to further distinguish points 

between the dynamic and static features in dynamic 

regions. The proposed method can not only accurately 

locate the position of dynamic objects, but also retain as 

many static feature points in the dynamic regions as 

possible. DYG-SLAM is evaluated by using multiple 

datasets and compared with state-of-the-art systems. 

Experimental results show that the presented method 

can improve the robustness and accuracy of SLAM 

system in dynamic scenes. The main contributions are 

summarized as follows: 

(1) a complete real-time VSLAM system has been 

constructed for dynamic environments. 

(2) a method that combines object detection and 

geometry constraints has been proposed to effectively 

eliminate dynamic objects. 

(3) a method calculating the geometry probability 

of feature points in dynamic regions has been presented 

by combining GC-RANSAC and Kalman Filter. 

 

2. Method 

2.1 Overview of SLAM 

The proposed method can be regarded as the front-end 

preprocessing stage of the SLAM system, which can 

effectively filter out dynamic feature points and 

preserve the moving probability of feature points in 

dynamic regions. Firstly, the object detection network is 

used to determine the position of dynamic objects in the 

image and divides the image into static and dynamic 

regions. Then, the modified geometry constraints 

combining GC-RANSAC and epipolar constraints is 

used to calculate the fundamental matrix of static 

regions and the geometry probability of feature points 

in the dynamic regions. Afterwards, the geometry 

probability of the feature points of previous frame 

image is considered as the prior probability. Based on 

Kalman Filter, the final geometry probability of the 

matching feature points in the dynamic regions of 

current frame can be obtained by fusing the prior 

probability and the geometry probability calculated by 

the geometry method. Next, the presented method 

expanded the probability of dynamic regions matching 

feature points to the unmatched feature points. Finally, 

the feature points with high dynamic probability 

(greater than 0.5) are eliminated. The presented 

dynamic feature points removal method will be 

embedded in the front-end of ORBSLAM2, which can 

effectively improve the accuracy of SLAM system. The 

framework of DYG-SLAM is shown in Figure 1. In the 

yellow block, the green points on the right image are 

the static feature points and the red feature points in the 

red bounding box are dynamic feature points after the 

first dynamic and static feature points division. In the 

purple block, it is mainly used to complete the task of 

calculating the fundamental matrix of static regions and 

the geometry probability of matching feature points in 

the dynamic regions. In the orange block, the yellow 

points are the static feature points and the red feature 

points are dynamic feature points after the probability 

propagation and expansion. 

2.2 Object Detection 

In order to determine the position of dynamic objects in 

the image, the presented method achieves the task using 

YOLOv3-tiny. YOLOv3-tiny was trained with the 

Crowdhuman dataset[9] , which can accurately detect 

the position of people in dense crowds[10] . The 

YOLOv3-tiny network trained on this dataset has an 

accuracy similar to YOLOv3 trained with MS 
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COCO[11] , and is more efficient than YOLOv3, with 

an efficiency of up to 50 FPS when running on CPU. It 

receives an RGB image and outputs the bounding box 

size, position and class. After determining the position 

of the dynamic objects through the position of bounding 

box, the presented method divides the image into static 

regions and dynamic regions.
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Fig.1 Framework of DYG-SLAM 

 

2.3 Geometry Probability 

The most traditional geometry methods only judge 

whether the feature points are static or dynamic 

according to the distance of geometry constraints. 

However, it does not divide dynamic and static objects 

very well. At the same time, the RANSAC (Random 

Sample Consensus) algorithm takes a long time to 

calculate the fundamental matrix F and the accuracy is 

not high. To solve these problems, a geometry 

constraints method using a new geometry probability is 

presented to divide the static and dynamic feature 

points. 

The presented method combines the GC-RANSAC

エラー! 参照元が見つかりません。 algorithm and 

the epipolar constraints to calculate the geometry 

probability of matching feature points in dynamic 
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regions.  

2.3.1 GC-RANSAC Algorithm 

The GC-RANSAC algorithm is a RANSAC-type 

robust estimator and is far superior to RANSAC in 

model estimation accuracy and computational speed. 

Given a point set ( ) 1, 1, ,t t
i iM p p i n−= =  

consisting of matching pairs of 2D and 2D points. The 

GC-RANSAC algorithm is used to calculate the 

fundamental matrix F  between two consecutive 

frames by optimizing the energy function 

( ) ( ) ( )( ),
,i i ji i j G

E L B L R L L


= +  with 

  0,1 1, ,iL L i n=  =  being a label assignment 

for the matching pair set M , and G  being a neighbor 

graph. The unary term of the energy function is 

formulated as: 

( )
( )( )

( )( )

1

1

1 , , , 1

, , , 0

t t
i i i

i
t t
i i i

K p p if L
B L

K p p if L

  

  

−

−

 − =


= 
=



 (1) 

where   is the angular parameter for fundamental 

matrix F , and ( ) ( )( )2 2, exp 2K    = − . 1iL =  

stands for an outlier pair and 0iL =  stands for an 

inlier pair. ( )1, ,t t
i ip p −

 is the distance from 

matching pair ( )1,t t
i ip p −

 the fundamental matrix F , 

and   is the threshold for outlier/inlier determination. 

The pairwise energy term is defined as: 

( ) ( ) ( )( )
( ) ( )( )

1                                    

, 2         0

1 2   1

i j

i j i j i j

i j i j

if L L

R L L B L B L if L L

B L B L if L L

 



= + = =

 − + = =


  (2) 

In this workd, 0.14 =  and 0.1 = . The total 

energy can be efficiently optimized by the graph cut 

algorithm[12] . 

2.3.2 Geometry Probability Algorithm 

Firstly, the GC-RANSAC algorithm is used to 

calculate the fundamental matrix F  by matching 

feature points in two consecutive frames of static 

regions. The epipolar constraints for matching feature 

points in two consecutive frames is shown in Figure 2. 

1tF −  and tF  represent two consecutive frames of 

images, t
ip  and 1t

ip −  represent a pair of matching 

feature points, t
truep  is the true corresponding feature 

point to 1t
ip − , wp  is the world coordinate point 

corresponding to t
truep  and t

truep , 1tC −  and tC  are 

the camera poses at different moments. 

 

Fig.2 Epipolar constraints 

 

Secondly, the epipolar line tl  for matching 

feature points in dynamic regions can be calculated 

from F  by: 

1t
t il Fp −=  (3) 

where  , ,
T

tl A B C= ,  , ,
T

A B C  is the vector 

representation of the epipolar line. 

Then, the distances between the matching feature 

points in the dynamic region and the corresponding 

epipolar line is calculated as: 

( )
( ) 1

1

2 2
, ,

T
t t
i i

t t
i i

p Fp

p p

A B

 

−

− =

+

 (4) 

where 
t
ip , 

1t
ip −

 use the homogeneous coordinates of 

the feature points.  

Eventually, the distances obtained by epipolar 

constraints can be converted to geometry probability by 

the following a binary sigmoid function: 

( )
( )( )( )1

1

1

1 *exp , ,

t
i

t t
i i

P p
C p p  −

=
+ − −

 (5) 

where ( )t
iP p  represents the geometry probability of 

t
ip , 1C  is a constant,  is the distance threshold. 

9 
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2.4 Probability Propagation Algorithm 

Most of the traditional geometry or deep 

learning-based SLAM only considers the connection of 

two consecutive frames, ignores the connection of 

consecutive multiple frames. Therefore, we assume that 

the motion between two consecutive frames satisfies the 

Markov property[13] , and proposes a probability 

propagation method based on Kalman filtering. 

There is an error in the feature point matching 

between the two frames, which can be understood as a 

state transition error. There is an error in the calculation 

of the fundamental matrix F , which can be understood 

as an observation error. We assume that the probability 

propagation between two matching feature points 

conforms to a Gaussian distribution. So, probability 

propagation method can be expressed as follows: 

Suppose the variance of state transitions is Q  and 

the variance of observations is R . 

Prediction step: 

( ) ( )1t t
i iP p P p

− +
−=     (6) 

1t t
Q Q Q

−

− += +     (7) 

Kalman Gain: 

t

t

Q
K

Q R

−

−
=

+
    (8) 

Update step: 

1
i i iATE E TG−=     (9) 

( )1 *
t t

Q K Q+ −= −            (10) 

where 1t −  and t  represent two consecutive 

moments, the symbols + and - denote the posterior and 

prior probabilities. Finally, ( )t
iP p

+

 is taken as the 

final geometry probability of t
ip .  

Because the feature points in the dynamic regions 

of the current frame are not all matched with the 

previous frame, it is necessary to extend the geometry 

probability of the matching feature points t
ip   in the 

dynamic regions to the unmatched feature points
t
jp . 

The geometry probability of updating the unmatched 

point according to the distance between the unmatched 

feature points and the matched feature points[14] . The 

update formula is as follows: 

( ) ( ) ( )( )
t m
i t

t t
j init i init

p D

P p P d P p P


= + −         (11) 

2 *exp
( )

0

d
C if d

d

otherwise


 

  
−   

=  



            (12) 

where m
tD  represents a set of matching feature points 

in the dynamic regions, initP  is the initial value of the 

unmatched feature points, 2C  is a constant, d  

represents the Euclidean distance between matched and 

unmatched feature points,   is the distance threshold.  

 

3. Experiments and Results 

In this section, the performance of DYG-SLAM 

towards dynamic scenes will be introduced in detail. We 

employ ORB-SLAM2 as the basic SLAM system. The 

proposed dynamic regions removal approach is 

integrated into the front-end of ORB-SLAM2. The 

presented method as a pre-processing to eliminate 

feature points in dynamic regions. The property of 

DYG-SLAM is evaluated on the public TUM 

dataset[15] . Furthermore, DYG-SLAM is compared 

with current state-of-the-art systems to verify the 

superiority. DYG-SLAM is implemented on a desktop 

PC with 3.5GHz Intel i7-7500U CPU, 8GB RAM, and a 

NVIDIA GeForce 940MX running Ubuntu Linux 18.04 

LTS. All tests were performed five times and median 

values were used for evaluation. In the experiment, 1C , 

 , Q , R , initP , 2C  and   are set to 2, 0.4, 0.09, 

1, 0.6, 1, 60 respectively.  

3.1 Performance evaluation on TUM RGB-D 

Dataset 

The TUM RGB-D dataset was proposed by the 

TUM Computer Vision Group in 2012, which is 

frequently used in the SLAM domain. It contains 

sequence of RGB images and depth images from a 

11 
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Microsoft Kinect camera, with their corresponding 

ground truth trajectories. The data was recorded at 30Hz 

with a 640 x 480 resolution. There are mainly two types 

of sequences used in our experiments. In the fr3_w 

sequences, two people walking through office scene. 

And the fr3_s can be considered low-dynamic which 

contain two people sitting in front of a desk and moving 

a little bit occasionally. The feature points extraction 

results of ORB-SLAM2, Crowd-SLAM and 

DYG-SLAM on fr3_w_xyz sequences were shown in 

Figure 3. It is obviously seen that the presented method 

can not only label dynamic regions, but also preserve as 

many static feature points in dynamic regions as 

possible. 

Estimated trajectories need to be compared with 

ground truth trajectories to evaluate the SLAM system. 

The Absolute Trajectory Error (ATE) and the Relative 

Pose Error (RPE) are often used as an error measure. 

The ATE is used to evaluate the global consistency of 

the estimated trajectory, while the RPE is used to 

evaluate the translation and rotation drift. The root 

mean square error (RMSE) and standard deviation error 

(SD) of ATE are applied as the performance indexes. 

The RMSE stands for the deviation of the estimated 

value from the true value. SD reflects the dispersion 

degree of the estimated camera trajectory. 

The ATE at a certain moment were as follows: 

1
i i iATE E TG−=  (13) 

where E  is the estimated trajectory, G  represents 

the ground truth, and T  is the transformation that 

aligns the two trajectories,   represents time interval. 

For a sequence of N  poses, the RMSE of ATE can be 

calculated using the following formula: 

( ) ( )
2

1:

1

1 N

N i

i

RMSE ATE trans ATE
N =

=   (14) 

Compared with the original ORB-SLAM2, the 

percentage of DYG-SLAM has been improved as 

follows: 

= 1- 100%





 
 

 
 (15) 

where   represents the improvement of DYG-SLAM 

compared with ORB-SLAM2,   represents the 

experiment of DYG-SLAM,   is the result of 

ORB-SLAM2. 

The performance improvements brought by 

DYG-SLAM were shown in Table 1. The predicted 

trajectories of the fr3_w_static, xyz, rpy, halfsphere, and 

fr3_s_static sequences were plotted in Figure 4-9. The 

superiority of DYG-SLAM can be clearly observed by 

the comparison with ORB-SLAM2 and Crowd-SLAM. 

As shown in Table 1, compared with 

ORB-SLAM2 and Crowd-SLAM, the RMSE and SD of 

presented algorithm achieved 97.4% and 96.36% in 

high dynamic sequences and 38.27% and 59.06% in 

low dynamic sequences. The comparisons among Ai et 

al.[16]  and YOLO-SLAM[17]  in the form of a bar 

chart were shown in Figure 9. DYG-SLAM 

outperformed the above-mentioned methods on most 

sequences. Although DYG-SLAM performs well on 

high dynamic sequences, which does not perform well 

on low dynamic sequences. The reason is that the 

dynamic objects removal method used in the dynamic 

scenes with low dynamic sequences will erroneously 

identify dynamic feature points as static feature points 

and retain them. 

3.2 Performance evaluation on Bonn RGB-D 

Dataset 

The Bonn RGB-D dynamic dataset was released 

by Photogrammetry & Robotics Lab of Bonn 

University in 2019, which includes 24 highly 

dynamic scenes, where people perform different 

tasks, such as walking, manipulating boxes or 

playing with balloons. It was recorded with an ASUS 

Xtion Pro LIVE sensor, combined with an Optitrack 

Prime 13 motion capture system for the ground truth 

trajectories. In this experiment, five sequences were 

12 
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selected for performance evaluation. The “crowd” 

sequences represent three people walking around the 

room at random. The “synchronous” sequences 

represent two people moving at the same speed and 

direction. These sequences are a big challenge to the 

traditional SLAM, but DYG-SLAM works well. 

Figure 10 shows the feature points extraction results 

of ORB-SLAM2, Crowd-SLAM and DYG-SLAM 

on crowd1 sequences. The red bounding boxes are 

the position of dynamic regions identified by 

YOLOv3-tiny. Obviously, the presented method can 

retain a number of static feature points in the 

dynamic regions. 

To further evaluate the performance of 

DYG-SLAM, the ORB-SLAM2 and Crowd-SLAM 

systems were chosen as the comparison. The 

evaluation metrics are the same as the TUM dataset. 

ORB-SLAM2 systems have large errors in all 

sequences, however, DYG-SLAM can guarantee 

both accuracy and robustness. 

The trajectory errors of DYG-SLAM on the 

Bonn dataset were shown in Table 2. Figure11-14 

represent the ATE plots from ORB-SLAM2, 

Crowd-SLAM, and DYG-SLAM for the crowd and 

synchronous sequences. DYG-SLAM outperforms 

ORB-SLAM2 on all datasets. DYG-SLAM 

outperforms Crowd-SLAM on crowd sequences, but 

it is inferior to Crowd-SLAM on synchronous 

sequences. 

3.3 Computational time comparison 

In real-world application, the real-time performance 

of SLAM system is a very important evaluation 

index. Table 3 shows the average time-comsuming 

(ms) of ORB-SLAM2 and DYG-SLAM run on Bonn 

sequences using only CPU. It is obvious from the 

experimental results that the time-consuming of 

DYG-SLAM is mainly on the Object detection and 

ORB feature matching in the dynamic objects 

removal. Time-consuming can be reduced by 

replacing better and faster feature matching 

algorithms, for instance, DynaSLAM[18]  achieved 

a mean performance of 1.35 FPS on crowd1 with 

GPU. Although DYG-SLAM is currently slower than 

ORB-SLAM2, it also far outperforms far 

outperforms those SLAM systems that require GPUs 

acceleration. Therefore, the presented method not 

only has high accuracy in high dynamic environment, 

but also achieved an average frame rate of 19 FPS 

with CPU. 

 

 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.3 Feature points extraction using ORB-SLAM2, Crowd-SLAM and DYG-SLAM on fr3_w_xyz. 
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(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.4 Ground truth and estimated trajectory in the sequence fr3_walking_static 

 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.5 Ground truth and estimated trajectory in the sequence fr3_walking_xyz 

 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.6 Ground truth and estimated trajectory in the sequence fr3_walking_rpy 

 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.7 Ground truth and estimated trajectory in the sequence fr3_walking_halfsphere 
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(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Fig.8 Ground truth and estimated trajectory in the sequence fr3_sitting_static 

 

Table 1 ATE comparison using DYG-SLAM, Crowd-SLAM and ORB-SLAM2. 

Sequences 
ORB-SLAM2  Crowd-SLAM  DYG-SLAM  Improvements 

RMSE  SD  RMSE  SD  RMSE  SD  RMSE  SD 

fr3_walking_static 0.4111  0.1312  0.0077  0.0038  0.0107  0.0056  97.40%  95.73% 

fr3_walking_xyz 0.6598  0.2558  0.0185  0.0100  0.0172  0.0093  97.39%  96.36% 

fr3_walking_rpy 0.6613  0.23782  0.0403  0.132  0.0351  0.0236  94.69%  90.08% 

fr3_walking_half 0.5557  0.2102  0.0275  0.0148  0.0263  0.0129  95.27%  93.86% 

fr3_sitting_static 0.0084  0.0041  0.0105  0.0057  0.0059  0.0027  29.76%  34.15% 

fr3_sitting_xyz 0.0087  0.0042  0.0196  0.0104  0.0154  0.0076  -77.01%  -80.95% 

fr3_sitting_rpy 0.0196  0.0127  0.0168  0.0095  0.0121  0.0052  38.27%  59.06% 

fr3_sitting_half 0.0175  0.0106  0.0219  0.0114  0.0154  0.0078  12.00%  26.42% 

Crowd-SLAM 0.0185 0.0077 0.0403 0.0275

Ai et al.[16] 0.0145 0.0071 0.0447 0.0298

YOLO-SLAM[17] 0.0146 0.0073 0.2164 0.0283

DYG-SLAM 0.0172 0.0107 0.0351 0.0263

fr3/w/xyz fr3/w/static fr3/w/rpy fr3/w/half
0

0.05

0.1

0.15

0.2

0.25

R
M

S
E
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Fig.9 RMSE of ATE 
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(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Figure 10 Feature points extraction results of ORB-SLAM2 Crowd-SLAM and DYG-SLAM on crowd1.  

 

Table 2 ATE comparison using DYG-SLAM, Crowd-SLAM and ORB-SLAM2. 

Sequences 

ORB-SLAM2  Crowd-SLAM  DYG-SLAM  Improvements 

RMSE Mean S.D.  RMSE Mean S.D.  RMSE Mean S.D.  RMSE Mean S.D. 

crowd1 0.9195 0.737 0.5498  0.0365 0.0215 0.0295  0.0269 0.0204 0.0175  97.07% 97.23% 96.82% 

crowd2 1.3606 1.2216 0.5991  0.0377 0.0319 0.0201  0.0324 0.0272 0.0176  97.62% 97.77% 97.06% 

crowd3 1.1019 1.0269 0.0263  0.044 0.0351 0.0264  0.0438 0.0352 0.0262  96.03% 96.57% 0.38% 

synchronous1 1.1892 1.0306 0.5934  0.1767 0.1077 0.1401  0.2791 0.2710 0.0669  76.53% 73.70% 88.73% 

synchronous2 1.5847 1.4986 0.5152  0.0189 0.0096 0.0162  0.1703 0.1454 0.0888  89.25% 90.30% 82.76% 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Figure 11 Ground truth and estimated trajectory in the sequence crowd1 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Figure 12 Ground truth and estimated trajectory in the sequence crowd2 
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(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Figure 13 Ground truth and estimated trajectory in the sequence crowd3 

 

(a) ORB-SLAM2                      (b) Crowd-SLAM                       (c) DYG-SLAM 

Figure 14 Ground truth and estimated trajectory in the sequence synchronous2 

 

Table 3 Comparison of the average time-consuming(ms) between the ORB-SLAM2 and DYG-SLAM 

Systems ORB feature extraction Object detection 

Dynamic objects removal 

Tracking Total time ORB feature 

matching 

Update geometry 

probability 

ORB-SLAM2 21.36 - - - 16.56 43.07 

DYG-SLAM 21.52 16.87 5.61 3.65 7.30 52.43 

 

4. Conclusion 

In this work, an efficient, accurate and robust VSLAM 

system was proposed, which is built on the top of 

ORB-SLAM2 to eliminate the influence of dynamic 

objects. The core of DYG-SLAM is a highly efficient 

dynamic feature points filtering method, including a 

method combining object detection and traditional 

geometry methods and a geometry probability 

calculation method combining GC-RANSAC and 

Kalman Filter. 

DYG-SLAM was evaluated on challenging 

dynamic sequences of the TUM RGB-D dataset and 

Bonn RGB-D dataset. DYG-SLAM achieves 90% 

improvement over the original ORBSLAM2 on most 

sequences and also outperforms the state-of-the-art 

Crowd-SLAM. Experimental results demonstrate that 

DYG-SLAM can operate stably, robustly and accurately 

in a dynamic environment. 

However, there are still some issues needed be 

worthy explored in DYG-SLAM. For example, 

DYG-SLAM only considers the environment 

dominated by dynamic pedestrians, and does not 

consider other dynamic objects, such as cars and 

animals, which will not completely eliminate the 

influence of other dynamic targets. We can train a more 
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complex target detection network by training, allowing 

it to recognize a wider variety of dynamic objects. At 

the same time, we can consider converting the sparse 

point cloud map into an octree map, and the system can 

be deployed on the actual robot to achieve more 

complex functions. 
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