
International Journal of Engineering Innovation and Management                  Vol.15, No.2, 2025 
 

 19 

 

Belief Rule Base Modeling Method with Rule Adaptation and Uncertainty 
Representation for Fault Diagnosis 

 

Dongyang Liu1, Jun Tao1, Tianhong Pan1* 
1*School of Electrical Engineering and Automation, Anhui University, 

 Hefei, 230601, Anhui, China. E-mail(s): thpan@ahu.edu.cn  
 

Abstract: To address the challenges of rule explosion and the representation of expert knowledge uncertainty 

in traditional Belief Rule Base (BRB) models for complex system fault diagnosis, an adaptive model 

construction method based on reinforcement learning is proposed in this work. First, a Deep Q-Network (DQN) 

mechanism is designed to adaptively adjust attribute reference values based on input data, thereby reducing 

redundancy and mitigating rule explosion. Second, a power set identification framework is introduced, 

incorporating belief variance and entropy into the parameter optimization process to capture the 

multidimensional uncertainty inherent in expert knowledge. Furthermore, a dimensionality reduction and 

clustering analysis method based on the rule activation weight matrix is presented to systematically evaluate 

the impact of reference value adjustments on model structure and inference performance. Finally, experimental 

results demonstrate that the proposed method significantly enhances the structural compactness, inference 

robustness, and predictive accuracy of BRB models in uncertain and complex environments. 
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1. Introduction 
In modern industrial production and engineering 

applications, complex systems are widely deployed in 

critical domains such as power systems, aerospace, and 

fundamental physics due to their characteristics of strong 

coupling, nonlinearity, multivariable interactions, and 

time-varying behavior. However, failures in such 

systems may lead to severe economic losses and safety 

hazards. Therefore, implementing effective Fault 

Diagnosis (FD) has become a critical task to ensure the 

reliability and safety of complex systems [1]. 

Fault diagnosis approaches for complex systems 

can be broadly categorized into three types based on 

modelling strategy and knowledge dependency: (1) 

Data-driven methods, which learn directly from data 

using models such as neural networks [2]. These 

methods capture nonlinear patterns but often suffer from 

poor interpretability and sensitivity to data quality [3]. 

(2) Mechanism-based methods, which rely on physical 

knowledge or expert rules and provide high 

interpretability [4], but lack adaptability in complex 

systems, fuzzy logic-based detection [5] and fault-tree 

analysis [6]. (3) Knowledge–data fusion methods, 

represented by the Belief Rule Base (BRB) framework 

[7], which integrates numerical data and expert rules for 

robust reasoning under uncertainty. Existing 

enhancements include interval-valued belief degrees [8] 

and hybrid BRB models [9]. 

Despite its strengths, BRB faces two core 

challenges: rule explosion, where rule count grows 

exponentially, and expert knowledge uncertainty, which 

affects inference reliability. Recent studies explored 
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interval BRB with rule reliability [10], OR-type BRB 

structures [11], and interpretability improvements [12], 

but limitations remain in scalability and optimization 

efficiency. 

To address these issues, this paper proposes an 

adaptive modeling framework that integrates deep 

reinforcement learning with a power-set-based BRB 

optimization strategy. The main contributions are: 

1) A Deep Q-Network (DQN)-based reinforcement 

learning mechanism is developed to dynamically adjust 

the reference values of attributes according to input data, 

reducing redundant rules and mitigating rule explosion. 

2) A power-set inference framework is introduced 

with belief variance and entropy integrated into inference 

and optimization, enabling multi-dimensional 

uncertainty characterization under incomplete and 

ambiguous expert knowledge. 

3) A rule-activation-matrix-based dimensionality 

reduction and clustering method is proposed to quantify 

the impact of reference value adjustment, demonstrating 

improved rule activation efficiency and a simplified 

inference structure. 

2. Basic knowledge of PBRB  
2.1 Description of PBRB 
The PBRB model incorporates a power-set–based 

inference mechanism to reduce expert-knowledge 

uncertainty [13]. The kth  rule is expressed as: 
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where 1 , , Mx xL  are the input attributes, 1 , ,k k
MA AL  

are the reference values for rule k . y  is the output of 

the PBRB model. The power set recognition framework 

expands these into 2N  output results, that is 

 1 2
, , N L . The belief degrees  1, 2 ,

, , Nk k
 L  

represent the credibility assigned to each output subset. 

A belief degree assigned to a singleton such as 

   1 2 2, , , , , ND D D DL L  represents local certainty, 

 1 , , ND DL  represents global uncertainty [14]. The rule 

weight k  reflects rule importance, while 1 , , M L  

denote attribute weights. 

2.2 Reasoning in PBRB 
Step 1: Input transformation 

Transform the input information of different 

attributes into belief distributions over the reference 

values. The matching degree is calculated as follows:  
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where ,
k
i j  denotes the matching degree, k

ilA  and 

( 1)
k
i lA   are the lth  and ( 1)l th  reference values of 

the ith  attribute in the kth  rule [15]. 

Step 2: Calculation of activation weights 

Each rule activation weight k  is determined: 
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where k  denotes the activation weight, 1, ,k L  , 

and k  represents the rule weight. k  is the overall 

matching degree of the kth  belief rule, and it is 

calculated using the following formula: 
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where i  represents the normalized relative weight, 

i  denotes the original weight of the input attribute 

assigned, M  is the total number of input attributes. 

Step 3: Fusion of the belief rule base 

To reduce computational complexity, the analytical 

ER formulation is used [14]: 
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where n  denotes the belief degrees of the consequents 

 1, , 2 1N
n n  L , excluding the empty set,   

denotes normalized intermediate variable.  

3. Reference values adjustment and 
optimization modeling 

3.1 Reinforcement learning environment 

An eight-dimensional state vector is  is designed to 

describe the model’s structure and behavior: 

  ,1 ,2 ,1 ,2, , , , ,i i i i i i is v v w w k y  (8) 

where ,1 ,2,i iv v   are the number of reference values for 

each attribute, and ,1 ,2,i iw w   denote the interval 

coverage, ik   is the number of rules and iy   is the 

inference output. 

The action space is defined as a two-dimensional 

discrete set: 

 1 1 1 1 1 1 2 2 2 2 2
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where ,1 ,2 ,3 ,4 ,5, , , ,i i i i it t t t t  denote the five structural 

operations, ,i kp  denotes the indices of the reference 

values, ,i kv  is corresponding adjustment magnitudes.  

The reward 1
ir  is defined to guide the PBRB 

structure optimization, the 2
ir  is an improvement 

reward during the continuous adjustment phase: 

  1
,5 ,6i i ir s s    (11) 

  2
1,5 ,5 , 1,1i i ir clip s s      (12) 

where   is the structural complexity penalty. 

The theoretical framework of the DQN algorithm is 

shown in Fig.1. 

 

Fig.1  Schematic diagram of the DQN 

3.2 Multidimensional uncertainty modeling 
To evaluate the uncertainty of local and global ignorance, 

two metrics are employed: (1) Belief variance: Indicates 

the degree of concentration of a belief distribution for a 

single rule; (2) Entropy: Measures the overall dispersion 

and disorder in the rule base inference outcomes. The 

variance kV  and entropy kE  are computed as: 
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Define the mean square error kMSE  of ( )y i  and 

ˆ( )y i , ( )y i  is the inference output according to utility 

theory. 

A weighted multi-objective optimization function is 

designed to balance predictive accuracy and uncertainty 

reduction: 
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where max( ), max( ),max( )k k kMSE V E  correspond to 

the maximum values of the MSE , belief variance, and 

entropy. 1 2 3, ,    are weighting factors set. 
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3.3 Structure interpretability assessment 
In the inference process of the PBRB, an activation 

weight matrix W  is constructed： 
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Three quantitative indicators are introduced: 

1) The mean rule correlation   is used to measure 

redundancy among rules: 
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where :,iW  denotes the activation vector of rule i  

across all samples, and :, jW  represents that of rule j . 

2) The mean activation entropy H  of each rule’s 
is defined as [16]: 
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where t
kp  denotes the normalized activation 

probability of rule k  for sample t . 

3) The clustering separability D  is calculated as: 
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where K  is the number of clusters, i  denotes the 

average intra-cluster distance of cluster i , and ijd  is 

the centroid distance between clusters i  and j . 

4. Case study 
A real pipeline-leakage dataset is used. The dataset 

includes 2,008 samples collected every 10 seconds from 

flow and pressure sensors under normal and controlled-

leak conditions. Leak events can be identified by inlet–

outlet flow discrepancies and abnormal pressure 

variations. Thus, the FlowDiff  and PressureDiff  

are selected as antecedent attributes, and the LeakSize  

serves as the consequent attribute. 

4.1 Training and testing of the proposed model 
Combining operating data and expert knowledge, leaks 

are identified by inlet–outlet flow discrepancies and 

abnormal pressure changes. 

After adaptive adjustment, the number of reference 

values for the FlowDiff  is reduced from 8 to 7, and 

that for the PressureDiff  is reduced from 7 to 6, 

resulting in a more compact rule base of 42 rules. The 

optimized model parameters are presented in Table 1. 

Table 1 Optimized PBRB model by training 

No 1  2  k          , , , , , , , , , , ,L M H L M L H M H L M H  

1 NL NL 0.5064 (0.1496, 0.1879, 0.2020, 0.1254, 0.0209, 0.0553, 0.2589) 

2 NL NM 0.6811 (0.0742, 0.1556, 0.6934, 0.0017, 0.0135, 0.0149, 0.0467) 

3 NL NS 0.1871 (0.0505, 0.0568, 0.6851, 0.0298, 0.0717, 0.0000, 0.1061) 

4 NL PS 0.2842 (0.0435, 0.5532, 0.0132, 0.0403, 0.0943, 0.0616, 0.1939) 

5 NL PM 0.1577 (0.0160, 0.4372, 0.3018, 0.0372, 0.1349, 0.0265, 0.0464) 

6 NL PL 0.9079 (0.3647, 0.2104, 0.0026, 0.0123, 0.2013, 0.0704, 0.1383) 

7 NM NL 0.3234 (0.3918, 0.1949, 0.0042, 0.0000, 0.3157, 0.0889, 0.0045) 

8 NM NM 0.7712 (0.0005, 0.3257, 0.1911, 0.0578, 0.0288, 0.3872, 0.0089) 

9 NM NS 0.3779 (0.0452, 0.1315, 0.3125, 0.0678, 0.1096, 0.0965, 0.2369) 

10 NM PS 0.5040 (0.0745, 0.4973, 0.0088, 0.0493, 0.2290, 0.1127, 0.0284) 

11 NM PM 0.9315 (0.0007, 0.4228, 0.0086, 0.4350, 0.0452, 0.0564, 0.0313) 

12 NM PL 0.0213 (0.0398, 0.3763, 0.0199, 0.0259, 0.0257, 0.3431, 0.1693) 

13 NS NL 0.3449 (0.6446, 0.1974, 0.0222, 0.0029, 0.1243, 0.0054, 0.0032) 

14 NS NM 0.7295 (0.6585, 0.0055, 0.0122, 0.0179, 0.0614, 0.0000, 0.2445) 

15 NS NS 0.9325 (0.0903, 0.1514, 0.2291, 0.0008, 0.1997, 0.2286, 0.1001) 

16 NS PS 0.1022 (0.0437, 0.5016, 0.1791, 0.0232, 0.1110, 0.0148, 0.1266) 

17 NS PM 0.5515 (0.1438, 0.0757, 0.5844, 0.1071, 0.0837, 0.0037, 0.0016) 

18 NS PL 0.9984 (0.0612, 0.0087, 0.5805, 0.0614, 0.0519, 0.1757, 0.0606) 

19 Z NL 0.8714 (0.5559, 0.0025, 0.4084, 0.0131, 0.0157, 0.0000, 0.0044) 

20 Z NM 0.9888 (0.3465, 0.0407, 0.0482, 0.1203, 0.2854, 0.1368, 0.0221) 

21 Z NS 0.4516 (0.7366, 0.2634, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000) 

22 Z PS 0.9144 (0.9813, 0.0000, 0.0000, 0.0087, 0.0041, 0.0000, 0.0059) 

23 Z PM 0.0091 (0.2258, 0.3734, 0.0333, 0.0435, 0.1359, 0.0567, 0.1314) 

24 Z PL 0.9684 (0.0205, 0.3635, 0.1206, 0.0136, 0.1268, 0.3166, 0.0384) 

25 PS NL 0.6239 (0.2191, 0.0661, 0.0387, 0.1108, 0.3404, 0.0999, 0.1250) 

26 PS NM 0.4238 (0.4381, 0.1451, 0.0316, 0.0058, 0.1172, 0.0000, 0.2622) 

27 PS NS 0.5263 (0.0921, 0.3888, 0.1175, 0.1501, 0.0346, 0.0882, 0.1287) 

28 PS PS 0.3565 (0.1216, 0.5030, 0.0621, 0.0052, 0.2623, 0.0255, 0.0203) 

29 PS PM 0.8746 (0.3548, 0.1496, 0.3591, 0.0435, 0.0003, 0.0003, 0.0924) 

30 PS PL 0.5817 (0.3637, 0.0541, 0.1098, 0.3181, 0.0282, 0.1189, 0.0072) 
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31 PM NL 0.6575 (0.3418, 0.0555, 0.1128, 0.3032, 0.0051, 0.0918, 0.0898) 

32 PM NM 0.7650 (0.7228, 0.0654, 0.0011, 0.0019, 0.1416, 0.0672, 0.0000) 

33 PM NS 0.6408 (0.7320, 0.0633, 0.0013, 0.0128, 0.0387, 0.0547, 0.0972) 

34 PM PS 0.4118 (0.3245, 0.0193, 0.1272, 0.0055, 0.1930, 0.2757, 0.0548) 

35 PM PM 0.8512 (0.5288, 0.0092, 0.0443, 0.0708, 0.2012, 0.1125, 0.0332) 

36 PM PL 0.0752 (0.0239, 0.3601, 0.3785, 0.0009, 0.1242, 0.0568, 0.0556) 

37 PL NL 0.6212 (0.0429, 0.3776, 0.0727, 0.0070, 0.0945, 0.3738, 0.0315) 

38 PL NM 0.7362 (0.0335, 0.3977, 0.0653, 0.0099, 0.0486, 0.0283, 0.4167) 

39 PL NS 0.2774 (0.7959, 0.0370, 0.0113, 0.0140, 0.0055, 0.1274, 0.0089) 

40 PL PS 0.0169 (0.0234, 0.0109, 0.6051, 0.0876, 0.0987, 0.0921, 0.0822) 

41 PL PM 0.0468 (0.1998, 0.0765, 0.0341, 0.0111, 0.1500, 0.3885, 0.1400) 

42 PL PL 0.0081 (0.0033, 0.3734, 0.0487, 0.1960, 0.0130, 0.2415, 0.1241) 

Figs.2 and 3 compare predicted and observed 

outputs, demonstrating accurate leakage detection and 

alignment with ground truth over time. 

 
Fig.2  Comparison of model output before and after 

optimization 

 

Fig.3  Observation output and output after PBRB training 

To assess interpretability improvements, PCA and 

t-SNE are applied to the activation weight matrix. Fig.4 

(PCA) shows clearer clustering boundaries and reduced 

overlap between rule groups, implying functional 

differentiation. Fig.5 (t-SNE) reveals tighter local 

clusters and fewer outliers after optimization. These 

results confirm that: (1) the model becomes more 

interpretable post-adjustment; (2) Semantic boundaries 

between rules are clear; (3) Redundancy is significantly 

reduced. 

 
Fig.4  PCA dimension reduction comparison 

 
Fig.5  T-SNE dimension reduction comparison 

4.2 Comparative study 
The comparative experiments were conducted against 

neural networks [14], fuzzy models [17], and 

representative BRB optimization approaches such as 

threshold pruning [18] and interval-based references [19]. 

As shown in Table 2, the fuzzy model adopts the same 

parameters as PBRB, and the neural network uses a 32-

node hidden layer trained for 500 iterations with a 

learning rate of 0.001. The proposed PBRB model 

achieves the lowest MSE among all baselines by 

mitigating rule explosion and enhancing uncertainty 

representation. 

Table 2 Comparative experiments 

Method MSE 

Fuzzy theory 3.7696 

Neural network 0.3033 

Threshold pruning 0.4266 

Interval references 0.4391 

PBRB 0.2401 

PBRB-DQN 0.1071 
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5. Conclusion 
A novel modeling and optimization framework for fault 

diagnosis in complex systems is presented in this study, 

which integrates deep reinforcement learning with the 

PBRB method. To overcome two major limitations of 

conventional BRB models: rule explosion and expert 

knowledge uncertainty, the proposed framework 

introduces three core innovations: (1) Adaptive reference 

value adjustment: a Deep Q-Network mechanism 

dynamically adjusts attributes reference values, based on 

observed data, effectively compressing the rule base 

while preserving inference integrity. (2) 

Multidimensional uncertainty modeling: The 

optimization process incorporates belief variance and 

entropy to quantitatively characterize uncertainty within 

expert knowledge. This facilitates more robust reasoning 

under ambiguous or incomplete information. (3) 

Structural assessment and interpretability: A rule 

activation weight matrix is used in conjunction with PCA 

and t-SNE to evaluate structural compactness and 

interpretability before and after optimization. 

Empirical validation using a real-world pipeline 

leak detection dataset demonstrates that the proposed 

framework significantly improves structural 

compactness, inference robustness, and prediction 

accuracy. Compared with traditional BRB models and 

other baseline methods, the proposed PBRB method 

shows superior performance in balancing accuracy and 

interpretability, particularly in uncertain and data-scarce 

environments. Future work will focus on extending the 

proposed method to dynamic systems with temporal 

dependencies and exploring multi-source data fusion 

strategies to further enhance adaptability and diagnostic 

performance in real-time industrial scenarios. 
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