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Abstract: To address the challenges of rule explosion and the representation of expert knowledge uncertainty

in traditional Belief Rule Base (BRB) models for complex system fault diagnosis, an adaptive model

construction method based on reinforcement learning is proposed in this work. First, a Deep Q-Network (DQN)

mechanism is designed to adaptively adjust attribute reference values based on input data, thereby reducing

redundancy and mitigating rule explosion. Second, a power set identification framework is introduced,

incorporating belief variance and entropy into the parameter optimization process to capture the

multidimensional uncertainty inherent in expert knowledge. Furthermore, a dimensionality reduction and

clustering analysis method based on the rule activation weight matrix is presented to systematically evaluate

the impact of reference value adjustments on model structure and inference performance. Finally, experimental

results demonstrate that the proposed method significantly enhances the structural compactness, inference

robustness, and predictive accuracy of BRB models in uncertain and complex environments.
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1. Introduction
In modern industrial production and engineering
applications, complex systems are widely deployed in
critical domains such as power systems, aerospace, and
fundamental physics due to their characteristics of strong
coupling, nonlinearity, multivariable interactions, and
time-varying behavior. However, failures in such
systems may lead to severe economic losses and safety
hazards. Therefore, implementing effective Fault
Diagnosis (FD) has become a critical task to ensure the
reliability and safety of complex systems [1].

Fault diagnosis approaches for complex systems
can be broadly categorized into three types based on
modelling strategy and knowledge dependency: (1)

Data-driven methods, which learn directly from data
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using models such as neural networks [2]. These
methods capture nonlinear patterns but often suffer from
poor interpretability and sensitivity to data quality [3].
(2) Mechanism-based methods, which rely on physical
knowledge or expert rules and provide high
interpretability [4], but lack adaptability in complex
systems, fuzzy logic-based detection [5] and fault-tree
analysis [6]. (3) Knowledge—data fusion methods,
represented by the Belief Rule Base (BRB) framework
[7], which integrates numerical data and expert rules for
robust reasoning under uncertainty. Existing
enhancements include interval-valued belief degrees [8]
and hybrid BRB models [9].

Despite its strengths, BRB faces two core
challenges: rule explosion, where rule count grows
exponentially, and expert knowledge uncertainty, which

affects inference reliability. Recent studies explored
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interval BRB with rule reliability [10], OR-type BRB
structures [11], and interpretability improvements [12],
but limitations remain in scalability and optimization
efficiency.

To address these issues, this paper proposes an
adaptive modeling framework that integrates deep
reinforcement learning with a power-set-based BRB
optimization strategy. The main contributions are:

1) A Deep Q-Network (DQN)-based reinforcement
learning mechanism is developed to dynamically adjust
the reference values of attributes according to input data,
reducing redundant rules and mitigating rule explosion.

2) A power-set inference framework is introduced
with belief variance and entropy integrated into inference
and  optimization, enabling  multi-dimensional
uncertainty characterization under incomplete and
ambiguous expert knowledge.

3) A rule-activation-matrix-based dimensionality
reduction and clustering method is proposed to quantify
the impact of reference value adjustment, demonstrating
improved rule activation efficiency and a simplified
inference structure.

2. Basic knowledge of PBRB
2.1 Description of PBRB
The PBRB model incorporates a power-set—based

inference mechanism to reduce expert-knowledge

uncertainty [13]. The kth rule is expressed as:

R:If x, is A" Ax, is &AL Ax,, is A,
then y is {(@sﬁl.k)aL ’(¢N+l’ﬂN+l,I:)9L ’(¢z“‘ By, )}s

with rule weight 6,,

M

antecedent attribute weight 6,,0,,L. ,0,,,
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where x,,L ,x, are the input attributes, Al" ,L ,AL
are the reference values for rule k. y is the output of
the PBRB model. The power set recognition framework
that is

expands these into 2"

L g,

output results,

The belief degrees {ﬁl’k,L B k}

represent the credibility assigned to each output subset.
A belief degree assigned to a singleton such as
(D,,D,),L. (DL ,Dy)
(D,.L ,D, ) represents global uncertainty [14]. The rule

represents local certainty,

weight 6, reflects rule importance, while o,,L ,d,,

denote attribute weights.

2.2 Reasoning in PBRB
Step 1: Input transformation

Transform the input information of different
attributes into belief distributions over the reference

values. The matching degree is calculated as follows:

A

— X,
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where ¢, denotes the matching degree, Ay and

Ay, are the Ith and (I+1)th reference values of

the ith attribute in the kth rule [15].
Step 2: Calculation of activation weights

Each rule activation weight @, is determined:

_ oy

o, =~ 3)
60,
i=1

where ®, denotes the activation weight, k=1---,L,
and 6, represents the rule weight. «, is the overall
matching degree of the kth belief rule, and it is

calculated using the following formula:

M =
a =[(a") (4)
i=1
5-—2 5)
max {5, }
m=1,2L .M

where 5, represents the normalized relative weight,
o, denotes the original weight of the input attribute
assigned, M is the total number of input attributes.
Step 3: Fusion of the belief rule base

To reduce computational complexity, the analytical

ER formulation is used [14]:
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where g, denotes the belief degrees of the consequents
8, (n =1L,2" —1) , excluding the empty set, u

denotes normalized intermediate variable.

3. Reference values adjustment and
optimization modeling

3.1 Reinforcement learning environment

An eight-dimensional state vector s, is designed to

describe the model’s structure and behavior:
Si:(vtl’ 12’W11’W12’k17y1) (8)

where Vv, ,v,, are the number of reference values for

each attribute, and w,;,w,, denote the interval

coverage, k, is the number of rules and y, is the
inference output.
The action space is defined as a two-dimensional
discrete set:
a: = (til,l’ti,z’ti,3ati,4atil,5ati,1’ti,z’ti,satiutis ©)
ai2 = (PP (10)

where ¢,,t,,.t,,.t,,,t,; denote the five structural

’pzk’ i1° 12""’vi,k)

operations, denotes the indices of the reference

D

values, v,, is corresponding adjustment magnitudes.

ik

The reward r' is defined to guide the PBRB

structure optimization, the 7’ is an improvement

reward during the continuous adjustment phase:

1
ro= —(si’5 + ﬂsisé)

i

(11)

(12)
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where A is the structural complexity penalty.

riz =clip |:(Sf-1

The theoretical framework of the DQN algorithm is

shown in Fig.1.
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Fig.1 Schematic diagram of the DQN

3.2 Multidimensional uncertainty modeling

To evaluate the uncertainty of local and global ignorance,
two metrics are employed: (1) Belief variance: Indicates
the degree of concentration of a belief distribution for a
single rule; (2) Entropy: Measures the overall dispersion
and disorder in the rule base inference outcomes. The

variance V* and entropy E* are computed as:

k _ 1 n 2
V _2 - 1(IBnk IBn,k) (13)
2V -1
_z IBn,k log an,k (14)
n=1
Define the mean square error MSE* of y(i) and

y(@), y(@) is the inference output according to utility
theory.
A weighted multi-objective optimization function is

designed to balance predictive accuracy and uncertainty

reduction:
k k k
min F(6,.6,,5,,) =4 MSE PN . A 3 X
| max(MSE") " max(V") max(E")
st. 0< B, <L n=1L,2" -1, k=1L ,L,
2N
2B sl (15)

n=1
0<6, <1, k=1L L,
0<5 <1, i=1L .M,

where max(MSE"), max(V*),max(E") correspond to
the maximum values of the MSE , belief variance, and

entropy. A4,,4,,4, are weighting factors set.
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3.3 Structure interpretability assessment
In the inference process of the PBRB, an activation

weight matrix W is constructed:

o, o, L o

W= o, w, L o, (16)
M M O M
o, o, L o

Three quantitative indicators are introduced:
1) The mean rule correlation o isused to measure
redundancy among rules:
WW.,
|W:J ""W/ "

_ 2
p_L(L—l)Z a7

i<j

where W7, denotes the activation vector of rule i

across all samples, and W, ; represents that of rule ;.

2) The mean activation entropy H of each rule’s
is defined as [16]:

T

. 1 L
H=—ree 33 pllog |
TogL ;Z}pk gD}

(18)
where p, denotes the normalized activation
probability of rule & for sample ¢.
3) The clustering separability D is calculated as:
1 & o,+0;

S (19)
where K is the number of clusters, o, denotes the
average intra-cluster distance of cluster 7, and d, is
the centroid distance between clusters i and j.

4. Case study

A real pipeline-leakage dataset is used. The dataset
includes 2,008 samples collected every 10 seconds from
flow and pressure sensors under normal and controlled-
leak conditions. Leak events can be identified by inlet—

outlet flow discrepancies and

variations. Thus, the FlowDiff and PressureDiff

abnormal pressure

are selected as antecedent attributes, and the LeakSize
serves as the consequent attribute.

4.1 Training and testing of the proposed model
Combining operating data and expert knowledge, leaks

are identified by inlet-outlet flow discrepancies and

abnormal pressure changes.

After adaptive adjustment, the number of reference

values for the FlowDiff is reduced from 8 to 7, and

that for the PressureDiff

is reduced from 7 to 6,

resulting in a more compact rule base of 42 rules. The

optimized model parameters are presented in Table 1.

Table 1 Optimized PBRB model by training

No 6, S8, 0, (LM, H,(L,M),(LH),(M,H),(L,M,H)
1 NL NL 0.5064  (0.1496, 0.1879, 0.2020, 0.1254, 0.0209, 0.0553, 0.2589)
2 NL NM  0.6811  (0.0742,0.1556, 0.6934, 0.0017, 0.0135, 0.0149, 0.0467)
3 NL NS 0.1871  (0.0505,0.0568, 0.6851, 0.0298, 0.0717, 0.0000, 0.1061)
4 NL PSS  0.2842  (0.0435,0.5532,0.0132, 0.0403, 0.0943, 0.0616, 0.1939)
5 NL PM  0.1577  (0.0160, 0.4372, 0.3018, 0.0372, 0.1349, 0.0265, 0.0464)
6 NL PL 09079  (0.3647,0.2104, 0.0026, 0.0123, 0.2013, 0.0704, 0.1383)
7 NM NL 03234  (0.3918,0.1949, 0.0042, 0.0000, 0.3157, 0.0889, 0.0045)
§ NM NM 0.7712  (0.0005,0.3257,0.1911, 0.0578, 0.0288, 0.3872, 0.0089)
9 NM NS 03779  (0.0452,0.1315,0.3125, 0.0678, 0.1096, 0.0965, 0.2369)
10 NM PS 05040  (0.0745,0.4973, 0.0088, 0.0493, 0.2290, 0.1127, 0.0284)
11 NM PM 09315  (0.0007,0.4228, 0.0086, 0.4350, 0.0452, 0.0564, 0.0313)
12 NM PL 00213  (0.0398,0.3763, 0.0199, 0.0259, 0.0257, 0.3431, 0.1693)
13 NS NL 03449  (0.6446, 0.1974, 0.0222, 0.0029, 0.1243, 0.0054, 0.0032)
14 NS NM 07295  (0.6585,0.0055,0.0122, 0.0179, 0.0614, 0.0000, 0.2445)
15 NS NS 09325  (0.0903,0.1514, 0.2291, 0.0008, 0.1997, 0.2286, 0.1001)
16 NS PS  0.1022  (0.0437,0.5016, 0.1791, 0.0232, 0.1110, 0.0148, 0.1266)
17 NS PM 05515  (0.1438,0.0757, 0.5844, 0.1071, 0.0837, 0.0037, 0.0016)
18 NS PL 09984  (0.0612,0.0087, 0.5805, 0.0614, 0.0519, 0.1757, 0.0606)
19 z NL 08714  (0.5559, 0.0025, 0.4084, 0.0131, 0.0157, 0.0000, 0.0044)
20 Z NM  0.9888  (0.3465,0.0407, 0.0482, 0.1203, 0.2854, 0.1368, 0.0221)
21 z NS 04516  (0.7366, 0.2634, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000)
22 z PS 09144  (0.9813,0.0000, 0.0000, 0.0087, 0.0041, 0.0000, 0.0059)
23 z PM  0.0091  (0.2258,0.3734, 0.0333, 0.0435, 0.1359, 0.0567, 0.1314)
24 z PL 09684  (0.0205,0.3635, 0.1206, 0.0136, 0.1268, 0.3166, 0.0384)
25 PSS NL 0.6239 (0.2191,0.0661, 0.0387, 0.1108, 0.3404, 0.0999, 0.1250)
26 PS NM 04238  (0.4381,0.1451,0.0316, 0.0058, 0.1172, 0.0000, 0.2622)
27 PS NS 05263  (0.0921,0.3888,0.1175, 0.1501, 0.0346, 0.0882, 0.1287)
28 PS PS 03565 (0.1216,0.5030, 0.0621, 0.0052, 0.2623, 0.0255, 0.0203)
29 PSS PM 08746  (0.3548,0.1496, 0.3591, 0.0435, 0.0003, 0.0003, 0.0924)
30 PS PL  0.5817  (0.3637,0.0541,0.1098, 0.3181, 0.0282, 0.1189, 0.0072)
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PM NL 0.6575 (0.3418,0.0555,0.1128, 0.3032, 0.0051, 0.0918, 0.0898)
PM NM 07650  (0.7228,0.0654,0.0011, 0.0019, 0.1416, 0.0672, 0.0000)
PM NS  0.6408  (0.7320,0.0633,0.0013, 0.0128, 0.0387, 0.0547, 0.0972)
PM  PS 04118  (0.3245,0.0193,0.1272, 0.0055, 0.1930, 0.2757, 0.0548)
PM PM 08512  (0.5288,0.0092, 0.0443, 0.0708, 0.2012, 0.1125, 0.0332)
PM PL 00752  (0.0239,0.3601, 0.3785, 0.0009, 0.1242, 0.0568, 0.0556)
PL NL 06212  (0.0429, 0.3776, 0.0727, 0.0070, 0.0945, 0.3738, 0.0315)
PL  NM 07362  (0.0335,0.3977, 0.0653, 0.0099, 0.0486, 0.0283, 0.4167)
PL NS 02774  (0.7959, 0.0370, 0.0113, 0.0140, 0.0055, 0.1274, 0.0089)
PL PS 00169  (0.0234,0.0109, 0.6051, 0.0876, 0.0987, 0.0921, 0.0822)
PL  PM 00468  (0.1998,0.0765, 0.0341, 0.0111, 0.1500, 0.3885, 0.1400)
PL PL 00081  (0.0033,0.3734, 0.0487, 0.1960, 0.0130, 0.2415, 0.1241)

Figs.2 and 3 compare predicted and observed

outputs, demonstrating accurate leakage detection and

alignment with ground truth over time.

LeakSize

Fig.2

optimization

Pressure Diff

initial PBR8

| #  achul value
|_#* oolimize PERB

FlowDiff

Comparison of model output before and after

Fig.3 Observation output and output after PBRB training

To assess interpretability improvements, PCA and

t-SNE are applied to the activation weight matrix. Fig.4
(PCA) shows clearer clustering boundaries and reduced
overlap between rule groups, implying functional

differentiation. Fig.5 (t-SNE) reveals tighter local

clusters and fewer outliers after optimization. These
results confirm that: (1) the model becomes more
interpretable post-adjustment; (2) Semantic boundaries

between rules are clear; (3) Redundancy is significantly

reduced.
] i
5 oy
i B ¥ L]
Fig4 PCA dimension reduction comparison
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Fig.5 T-SNE dimension reduction comparison

4.2 Comparative study

The comparative experiments were conducted against
neural networks [14], fuzzy models [17], and
representative BRB optimization approaches such as
threshold pruning [18] and interval-based references [19].
As shown in Table 2, the fuzzy model adopts the same
parameters as PBRB, and the neural network uses a 32-
node hidden layer trained for 500 iterations with a
learning rate of 0.001. The proposed PBRB model
achieves the lowest MSE among all baselines by
mitigating rule explosion and enhancing uncertainty
representation.

Table 2 Comparative experiments

Method MSE
Fuzzy theory 3.7696
Neural network 0.3033
Threshold pruning 0.4266
Interval references 0.4391
PBRB 0.2401
PBRB-DQN 0.1071
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5. Conclusion

A novel modeling and optimization framework for fault
diagnosis in complex systems is presented in this study,
which integrates deep reinforcement learning with the
PBRB method. To overcome two major limitations of
conventional BRB models: rule explosion and expert
knowledge uncertainty, the proposed framework
introduces three core innovations: (1) Adaptive reference
value adjustment: a Deep Q-Network mechanism
dynamically adjusts attributes reference values, based on
observed data, effectively compressing the rule base
@)
The

while preserving inference integrity.

Multidimensional ~ uncertainty modeling:
optimization process incorporates belief variance and
entropy to quantitatively characterize uncertainty within
expert knowledge. This facilitates more robust reasoning

)

Structural assessment and interpretability: A rule

under ambiguous or incomplete information.
activation weight matrix is used in conjunction with PCA
and t-SNE to evaluate structural compactness and
interpretability before and after optimization.

Empirical validation using a real-world pipeline
leak detection dataset demonstrates that the proposed
framework structural

significantly improves

compactness, inference robustness, and prediction
accuracy. Compared with traditional BRB models and
other baseline methods, the proposed PBRB method
shows superior performance in balancing accuracy and
interpretability, particularly in uncertain and data-scarce
environments. Future work will focus on extending the
proposed method to dynamic systems with temporal
dependencies and exploring multi-source data fusion
strategies to further enhance adaptability and diagnostic

performance in real-time industrial scenarios.
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